cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 54 results. Next

A330472 Triangle read by rows where T(n,k) is the number of non-isomorphic k-element multisets of nonempty multisets of nonempty multisets (all finite).

Original entry on oeis.org

1, 0, 1, 0, 4, 2, 0, 10, 8, 3, 0, 33, 48, 18, 5, 0, 91, 204, 118, 32, 7, 0, 298, 959, 743, 266, 58, 11, 0, 910, 4193, 4334, 1927, 519, 94, 15, 0, 3017, 18947, 25305, 13992, 4407, 966, 154, 22, 0, 9945, 84798, 145033, 97947, 36410, 9023, 1679, 236, 30
Offset: 0

Views

Author

Gus Wiseman, Dec 19 2019

Keywords

Examples

			Triangle begins:
   1
   0   1
   0   4   2
   0  10   8   3
   0  33  48  18   5
   0  91 204 118  32   7
   0 298 959 743 266  58  11
For example, row n = 3 counts the following multiset partitions:
  {{111}}      {{1}}{{11}}    {{1}}{{1}}{{1}}
  {{112}}      {{1}}{{12}}    {{1}}{{1}}{{2}}
  {{123}}      {{1}}{{23}}    {{1}}{{2}}{{3}}
  {{1}{11}}    {{2}}{{11}}
  {{1}{12}}    {{1}}{{1}{1}}
  {{1}{23}}    {{1}}{{1}{2}}
  {{2}{11}}    {{1}}{{2}{3}}
  {{1}{1}{1}}  {{2}}{{1}{1}}
  {{1}{1}{2}}
  {{1}{2}{3}}
		

Crossrefs

Row sums are A318566.
Column k = 1 is A007716 (for n > 0).
Column k = n is A000041.
Partitions of partitions of partitions are A007713.
Twice-factorizations are A050336.
If this is the 3-dimensional version, the 2-dimensional version is A317533.
See A330473 for a variation.

Programs

  • PARI
    \\ See links in A339645 for combinatorial species functions.
    ColGf(k,n)={my(A=symGroupSeries(n)); OgfSeries(sCartProd(sExp(A), sSubstOp(polcoef(A,k,x)*x^k + O(x*x^n), sExp(A)) ))}
    M(n,m=n)={Mat(vector(m+1, k, Col(ColGf(k-1,n), -(n+1))))}
    { my(A=M(10)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Jan 17 2023

Extensions

Terms a(21) and beyond from Andrew Howroyd, Jan 17 2023

A316784 Number of orderless identity tree-factorizations of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 1, 10, 1, 2, 2, 4, 1, 8, 1, 6, 2, 2, 2, 13, 1, 2, 2, 10, 1, 8, 1, 4, 4, 2, 1, 26, 1, 4, 2, 4, 1, 10, 2, 10, 2, 2, 1, 28, 1, 2, 4, 13, 2, 8, 1, 4, 2, 8, 1, 46, 1, 2, 4, 4, 2, 8, 1, 26, 3, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Jul 13 2018

Keywords

Comments

A factorization of n is a finite nonempty multiset of positive integers greater than 1 with product n. An orderless identity tree-factorization of n is either (case 1) the number n itself or (case 2) a finite set of two or more distinct orderless identity tree-factorizations, one of each factor in a factorization of n.
a(n) depends only on the prime signature of n. - Andrew Howroyd, Nov 18 2018

Examples

			The a(24)=10 orderless identity tree-factorizations:
  24
  (4*6)
  (3*8)
  (2*12)
  (2*3*4)
  (4*(2*3))
  (3*(2*4))
  (2*(2*6))
  (2*(3*4))
  (2*(2*(2*3)))
		

Crossrefs

Programs

  • Mathematica
    postfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[postfacs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    oltsfacs[n_]:=If[n<=1,{{}},Prepend[Select[Union@@Function[q,Sort/@Tuples[oltsfacs/@q]]/@DeleteCases[postfacs[n],{n}],UnsameQ@@#&],n]];
    Table[Length[oltsfacs[n]],{n,100}]
  • PARI
    seq(n)={my(v=vector(n), w=vector(n)); w[1]=v[1]=1; for(k=2, n, w[k]=v[k]+1; forstep(j=n\k*k, k, -k, my(i=j, e=0); while(i%k==0, i/=k; e++; v[j] += binomial(w[k], e)*v[i]))); w} \\ Andrew Howroyd, Nov 18 2018

Formula

a(p^n) = A300660(n) for prime p. - Andrew Howroyd, Nov 18 2018

A316790 Number of orderless same-tree-factorizations of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jul 14 2018

Keywords

Comments

A constant factorization of n is a finite nonempty constant multiset of positive integers greater than 1 with product n. Constant factorizations correspond to perfect divisors (A089723). An orderless same-tree-factorization of n is either (case 1) the number n itself or (case 2) a finite multiset of two or more orderless same-tree-factorizations, one of each factor in a constant factorization of n.
a(n) depends only on the prime signature of n. - Andrew Howroyd, Nov 18 2018

Examples

			The a(64) = 9 orderless same-tree-factorizations:
  64
  (8*8)
  (4*4*4)
  (4*4*(2*2))
  (8*(2*2*2))
  (2*2*2*2*2*2)
  (4*(2*2)*(2*2))
  ((2*2*2)*(2*2*2))
  ((2*2)*(2*2)*(2*2))
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=1+Sum[Binomial[a[n^(1/d)]+d-1,d],{d,Rest[Divisors[GCD@@FactorInteger[n][[All,2]]]]}]
    Array[a,100]
  • PARI
    a(n)={my(z, e=ispower(n,,&z)); 1 + if(e, sumdiv(e, d, if(d>1, binomial(a(z^(e/d)) + d - 1, d))))} \\ Andrew Howroyd, Nov 18 2018

Formula

a(n) = 1 + Sum_{n = x^y, y > 1} binomial(a(x) + y - 1, y).
a(2^n) = A289078(n).

A320266 Number of balanced orderless tree-factorizations of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 6, 1, 4, 1, 4, 2, 2, 1, 8, 2, 2, 3, 4, 1, 5, 1, 9, 2, 2, 2, 11, 1, 2, 2, 8, 1, 5, 1, 4, 4, 2, 1, 17, 2, 4, 2, 4, 1, 8, 2, 8, 2, 2, 1, 13, 1, 2, 4, 19, 2, 5, 1, 4, 2, 5, 1, 24, 1, 2, 4, 4, 2, 5, 1, 17, 6, 2, 1, 13, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 08 2018

Keywords

Comments

A rooted tree is balanced if all leaves are the same distance from the root.
An orderless tree-factorization of n is either (case 1) the number n itself or (case 2) a finite multiset of two or more orderless tree-factorizations, one of each factor in a factorization of n.
a(n) depends only on the prime signature of n. - Andrew Howroyd, Nov 18 2018

Examples

			The a(36) = 11 balanced orderless tree-factorizations:
  36,
  (2*18), (3*12), (4*9), (6*6),
  (2*2*9), (2*3*6), (3*3*4),
  (2*2*3*3), ((2*2)*(3*3)), ((2*3)*(2*3)).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    oltfacs[n_]:=If[n<=1,{{}},Prepend[Union@@Function[q,Sort/@Tuples[oltfacs/@q]]/@DeleteCases[facs[n],{n}],n]];
    Table[Length[Select[oltfacs[n],SameQ@@Length/@Position[#,_Integer]&]],{n,100}]
  • PARI
    MultEulerT(u)={my(v=vector(#u)); v[1]=1; for(k=2, #u, forstep(j=#v\k*k, k, -k, my(i=j, e=0); while(i%k==0, i/=k; e++; v[j]+=binomial(e+u[k]-1, e)*v[i]))); v}
    seq(n)={my(u=vector(n, i, 1), v=vector(n)); while(u, v+=u; u[1]=1; u=MultEulerT(u)-u); v} \\ Andrew Howroyd, Nov 18 2018

Formula

a(p^n) = A320160(n) for prime p. - Andrew Howroyd, Nov 18 2018

A320267 Number of balanced complete orderless tree-factorizations of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Oct 08 2018

Keywords

Comments

a(1) = 1 by convention.
A rooted tree is balanced if all leaves are the same distance from the root.
An orderless tree-factorization (see A292504 for definition) is complete if all leaves are prime numbers.
a(n) depends only on the prime signature of n. - Andrew Howroyd, Nov 18 2018

Examples

			The a(96) = 5 balanced complete orderless tree-factorizations:
     (2*2*2*2*2*3)
   ((2*2)*(2*2*2*3))
   ((2*3)*(2*2*2*2))
   ((2*2*2)*(2*2*3))
  ((2*2)*(2*2)*(2*3))
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    oltfacs[n_]:=If[n<=1,{{}},Prepend[Union@@Function[q,Sort/@Tuples[oltfacs/@q]]/@DeleteCases[facs[n],{n}],n]];
    Table[Length[Select[oltfacs[n],And[SameQ@@Length/@Position[#,_Integer],FreeQ[#,_Integer?(!PrimeQ[#]&)]]&]],{n,100}]
  • PARI
    MultEulerT(u)={my(v=vector(#u)); v[1]=1; for(k=2, #u, forstep(j=#v\k*k, k, -k, my(i=j, e=0); while(i%k==0, i/=k; e++; v[j]+=binomial(e+u[k]-1, e)*v[i]))); v}
    seq(n)={my(u=vector(n, i, i==1 || isprime(i)), v=vector(n)); while(u, v+=u; u[1]=1; u=MultEulerT(u)-u); v} \\ Andrew Howroyd, Nov 18 2018

Formula

a(p^n) = A120803(n) for prime p. - Andrew Howroyd, Nov 18 2018

A330473 Regular triangle where T(n,k) is the number of non-isomorphic multiset partitions of k-element multiset partitions of multisets of size n.

Original entry on oeis.org

1, 0, 1, 0, 2, 4, 0, 3, 8, 10, 0, 5, 28, 38, 33, 0, 7, 56, 146, 152, 91, 0, 11, 138, 474, 786, 628, 298, 0, 15, 268, 1388, 3117, 3808, 2486, 910, 0, 22, 570, 3843, 11830, 19147, 18395, 9986, 3017, 0, 30, 1072, 10094, 40438, 87081, 110164, 86388, 39889, 9945
Offset: 0

Views

Author

Gus Wiseman, Dec 20 2019

Keywords

Comments

As an alternative description, T(n,k) is the number of non-isomorphic multisets of nonempty multisets of nonempty multisets with n leaves whose multiset union consists of k multisets.

Examples

			Triangle begins:
   1
   0   1
   0   2   4
   0   3   8  10
   0   5  28  38  33
   0   7  56 146 152  91
   0  11 138 474 786 628 298
For example, row n = 3 counts the following multiset partitions:
  {{111}}  {{1}{11}}    {{1}{1}{1}}
  {{112}}  {{1}{12}}    {{1}{1}{2}}
  {{123}}  {{1}{23}}    {{1}{2}{3}}
           {{2}{11}}    {{1}}{{1}{1}}
           {{1}}{{11}}  {{1}}{{1}{2}}
           {{1}}{{12}}  {{1}}{{2}{3}}
           {{1}}{{23}}  {{2}}{{1}{1}}
           {{2}}{{11}}  {{1}}{{1}}{{1}}
                        {{1}}{{1}}{{2}}
                        {{1}}{{2}}{{3}}
		

Crossrefs

Row sums are A318566.
Column k = 1 is A000041 (for n > 0).
Column k = n is A007716.
Partitions of partitions of partitions are A007713.
Twice-factorizations are A050336.
The 2-dimensional version is A317533.
See A330472 for a variation.

Programs

  • PARI
    \\ See links in A339645 for combinatorial species functions.
    ColGf(k, n)={my(A=symGroupSeries(n)); OgfSeries(sCartProd(sExp(A), sSubstOp(polcoef(sExp(A), k, x)*x^k + O(x*x^n), A) ))}
    M(n, m=n)={Mat(vector(m+1, k, Col(ColGf(k-1, n), -(n+1))))}
    { my(A=M(10)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Jan 18 2023

Extensions

Terms a(36) and beyond from Andrew Howroyd, Jan 18 2023

A316695 Number of series-reduced locally disjoint rooted trees whose leaves form the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 3, 1, 1, 1, 8, 1, 1, 2, 3, 1, 4, 1, 10, 1, 1, 1, 12, 1, 1, 1, 8, 1, 4, 1, 3, 3, 1, 1, 23, 1, 3, 1, 3, 1, 8, 1, 8, 1, 1, 1, 16, 1, 1, 3, 24, 1, 4, 1, 3, 1, 4, 1, 37, 1, 1, 3, 3, 1, 4, 1, 23, 5, 1, 1, 16
Offset: 1

Views

Author

Gus Wiseman, Jul 10 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches. It is locally disjoint if no branch overlaps any other (unequal) branch of the same root.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The a(24) = 8 trees:
  (1(1(12)))
  (1(2(11)))
  (2(1(11)))
  (1(112))
  (2(111))
  (11(12))
  (12(11))
  (1112)
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};
    sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
    gro[m_]:=gro[m]=If[Length[m]==1,List/@m,Union[Sort/@Join@@(Tuples[gro/@#]&/@Select[mps[m],Length[#]>1&])]];
    Table[Length[Select[gro[If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]],And@@Cases[#,q:{__List}:>disjointQ[q],{0,Infinity}]&]],{n,100}]

A316768 Number of series-reduced locally stable rooted trees whose leaves form an integer partition of n.

Original entry on oeis.org

1, 2, 4, 11, 29, 91, 284, 950, 3235, 11336, 40370, 146095, 534774, 1977891, 7377235, 27719883
Offset: 1

Views

Author

Gus Wiseman, Jul 12 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches. It is locally stable if no branch is a submultiset of any other branch of the same root.

Examples

			The a(5) = 29 trees:
  5,
  (14),
  (23),
  (1(13)), (3(11)), (113),
  (1(22)), (2(12)), (122),
  (1(1(12))), (1(2(11))), (1(112)), (2(1(11))), (2(111)), ((11)(12)), (11(12)), (12(11)), (1112),
  (1(1(1(11)))), (1(1(111))), (1((11)(11))), (1(11(11))), (1(1111)), ((11)(1(11))), (11(1(11))), (11(111)), (1(11)(11)), (111(11)), (11111).
Missing from this list but counted by A141268 is ((11)(111)).
		

Crossrefs

Programs

  • Mathematica
    submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]];
    stableQ[u_]:=Apply[And,Outer[#1==#2||!submultisetQ[#1,#2]&&!submultisetQ[#2,#1]&,u,u,1],{0,1}];
    nms[n_]:=nms[n]=Prepend[Join@@Table[Select[Union[Sort/@Tuples[nms/@ptn]],stableQ],{ptn,Rest[IntegerPartitions[n]]}],{n}];
    Table[Length[nms[n]],{n,10}]

Extensions

a(15)-a(16) from Robert Price, Sep 16 2018

A316766 Number of series-reduced locally stable rooted identity trees whose leaves form an integer partition of n.

Original entry on oeis.org

1, 1, 2, 3, 6, 13, 30, 72, 180, 458, 1194, 3160, 8459, 22881, 62417, 171526, 474405, 1319395, 3687711, 10352696, 29178988
Offset: 1

Views

Author

Gus Wiseman, Jul 12 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches. It is locally stable if no branch is a submultiset of any other branch of the same root. It is an identity tree if no branch appears multiple times under the same root.

Examples

			The a(6) = 13 trees:
6,
(15),
(1(14)),
(1(1(13))),
(1(1(1(12)))),
(1(23)), (2(13)), (3(12)), (123),
(1(2(12))), (2(1(12))), (12(12)),
(24).
Example of non-stable trees are ((12)(123)) and ((12)(12(12))).
		

Crossrefs

Programs

  • Mathematica
    submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]];
    stableQ[u_]:=Apply[And,Outer[#1==#2||!submultisetQ[#1,#2]&&!submultisetQ[#2,#1]&,u,u,1],{0,1}];
    nms[n_]:=nms[n]=Prepend[Join@@Table[Select[Union[Sort/@Tuples[nms/@ptn]],And[UnsameQ@@#,stableQ[#]]&],{ptn,Rest[IntegerPartitions[n]]}],{n}];
    Table[Length[nms[n]],{n,10}]

Extensions

a(18)-a(21) from Robert Price, Sep 14 2018

A316767 Number of series-reduced locally stable rooted trees whose leaves form the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 3, 1, 1, 1, 8, 1, 1, 2, 3, 1, 4, 1, 10, 1, 1, 1, 12, 1, 1, 1, 8, 1, 4, 1, 3, 3, 1, 1, 24, 1, 3, 1, 3, 1, 8, 1, 8, 1, 1, 1, 17, 1, 1, 3, 24, 1, 4, 1, 3, 1, 4, 1, 39, 1, 1, 3, 3, 1, 4, 1, 24, 5, 1, 1, 17
Offset: 1

Views

Author

Gus Wiseman, Jul 12 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches. It is locally stable if no branch is a submultiset of any other branch of the same root.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The a(24) = 8 trees:
  (1(1(12)))
  (1(2(11)))
  (2(1(11)))
  (1(112))
  (2(111))
  (11(12))
  (12(11))
  (1112)
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};
    sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    stableQ[u_]:=Apply[And,Outer[#1==#2||Complement[#2,#1]=!={}&,u,u,1],{0,1}];
    gro[m_]:=gro[m]=If[Length[m]==1,List/@m,Union[Sort/@Join@@(Tuples[gro/@#]&/@Select[mps[m],Length[#]>1&])]];
    Table[Length[Select[gro[If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]],And@@Cases[#,q:{__List}:>stableQ[q],{0,Infinity}]&]],{n,100}]
Previous Showing 41-50 of 54 results. Next