cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A303864 Array read by antidiagonals: T(n,k) = number of noncrossing path sets on k*n nodes up to rotation with each path having exactly k nodes.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 6, 2, 1, 1, 4, 36, 38, 3, 1, 1, 10, 210, 960, 384, 6, 1, 1, 16, 1176, 18680, 35956, 4425, 14, 1, 1, 36, 6328, 313664, 2280910, 1588192, 57976, 34, 1, 1, 64, 32896, 4683168, 111925464, 323840016, 77381016, 807318, 95, 1
Offset: 0

Views

Author

Andrew Howroyd, May 01 2018

Keywords

Examples

			Array begins:
=======================================================
n\k| 1  2     3        4           5              6
---+---------------------------------------------------
0  | 1  1     1        1           1              1 ...
1  | 1  1     1        3           4             10 ...
2  | 1  1     6       36         210           1176 ...
3  | 1  2    38      960       18680         313664 ...
4  | 1  3   384    35956     2280910      111925464 ...
5  | 1  6  4425  1588192   323840016    46552781760 ...
6  | 1 14 57976 77381016 50668922540 21346459738384 ...
...
		

Crossrefs

Columns 2..4 are A002995(n+1), A303865, A303866.
Row n=1 is A051437(k-3).
Cf. A295224 (polygon dissections), A303694 (sets of cycles instead of paths).

Programs

  • Mathematica
    nmax = 10; seq[n_, k_] := Module[{p, q, h}, p = 1 + InverseSeries[ x/(k*2^If[k == 1, 0, k - 3]*(1 + x)^k) + O[x]^n, x ]; h = p /. x -> x^2 + O[x]^n; q = x*D[p, x]/p; Integrate[((p - 1)/k + Sum[EulerPhi[d]*(q /. x -> x^d + O[x]^n), {d, 2, n}])/x, x] + If[OddQ[k], 0, 2^(k/2 - 2)*x*h^(k/2)] + 1];
    Clear[col]; col[k_] := col[k] = CoefficientList[seq[nmax, k], x];
    T[n_, k_] := col[k][[n + 1]];
    Table[T[n - k, k], {n, 0, nmax}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jul 04 2018, after Andrew Howroyd *)
  • PARI
    seq(n,k)={ \\ gives gf of k'th column
    my(p=1 + serreverse( x/(k*2^if(k==1, 0, k-3)*(1 + x)^k) + O(x*x^n) ));
    my(h=subst(p,x,x^2+O(x*x^n)), q=x*deriv(p)/p);
    intformal( ((p-1)/k + sum(d=2,n,eulerphi(d)*subst(q,x,x^d+O(x*x^n))))/x) + if(k%2, 0, 2^(k/2-2)*x*h^(k/2)) + 1;
    }
    Mat(vector(6, k, Col(seq(7, k))))

A221184 Number of colored quivers in the 4-mutation class of a quiver of Dynkin type A_n.

Original entry on oeis.org

1, 1, 3, 19, 118, 931, 7756, 68685, 630465, 5966610, 57805410, 571178751, 5737638778, 58455577800, 602859152496, 6283968796705, 66119469155523, 701526880303315, 7498841128986109, 80696081185766970, 873654669882574580
Offset: 0

Views

Author

N. J. A. Sloane, Jan 22 2013

Keywords

Comments

Also, number of nonequivalent dissections of a polygon into n+1 hexagons by nonintersecting diagonals up to rotation. - Andrew Howroyd, Nov 20 2017
Number of oriented polyominoes composed of n+1 hexagonal cells of the hyperbolic regular tiling with Schläfli symbol {6,oo}. A stereographic projection of this tiling on the Poincaré disk can be obtained via the Christensson link. For oriented polyominoes, chiral pairs are counted as two. - Robert A. Russell, Jan 23 2024

Crossrefs

Column k=6 of A295224.
Polyominoes: A004127 (unoriented), A369473 (chiral), A143546 (achiral), A001683(n+2) {3,oo}, A005034 {4,oo}, A005038 {5,oo}.

Programs

  • Mathematica
    u[n_, k_, r_] := r*Binomial[(k - 1)*n + r, n]/((k - 1)*n + r);
    T[n_, k_] := u[n, k, 1] + (If[EvenQ[n], u[n/2, k, 1], 0] - u[n, k, 2])/2 + DivisorSum[GCD[n - 1, k], EulerPhi[#]*u[(n - 1)/#, k, k/#] &]/k;
    a[n_] := T[n + 1, 6];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 14 2018, after Andrew Howroyd *)
    p=6; Table[Binomial[(p-1)n,n]/(((p-2)n+1)((p-2)n+2))+If[OddQ[n],0,Binomial[(p-1)n/2,n/2]/((p-2)n+2)]+DivisorSum[GCD[p,n-1],EulerPhi[#]Binomial[((p-1)n+1)/#,(n-1)/#]/((p-1)n+1)&,#>1&],{n,30}] (* Robert A. Russell, Jan 23 2024 *)

Formula

a(n) ~ 5^(5*n + 11/2) / (sqrt(Pi) * n^(5/2) * 2^(8*n + 27/2)). - Vaclav Kotesovec, Jun 15 2018
a(n-1) = A004127(n) + A369473(n) = 2*A004127(n) - A143546(n) = 2*A369473(n) + A143546(n). - Robert A. Russell, Jan 23 2024

Extensions

a(0)=1 and a(18)-a(20) corrected by Andrew Howroyd, Nov 20 2017

A295495 Number of dissections of an n-gon by nonintersecting diagonals into polygons with a prime number of sides counted up to rotations.

Original entry on oeis.org

1, 1, 2, 5, 11, 36, 114, 410, 1458, 5488, 20786, 80770, 317378, 1265139, 5094139, 20718347, 84961256, 351086326, 1460591637, 6113826319, 25733864299, 108867782794, 462707558813, 1974991841442, 8463121111860, 36397780088126, 157066702354947, 679917566925030
Offset: 3

Views

Author

Andrew Howroyd, Nov 22 2017

Keywords

Crossrefs

Programs

  • Mathematica
    DissectionsModCyclic[v_] :=
    Module[{n = Length[v], q, vars, u, p}, q = Table[0, {n}]; q[[1]] = InverseSeries[x - Sum[x^i v[[i]], {i, 3, Length[v]}]/x + O[x]^(n+1)]; For[i = 2, i <= n, i++, q[[i]] = q[[i-1]] q[[1]]]; vars = Variables[q[[1]]]; u[m_, r_] := Normal[(q[[r]] + O[x]^(Quotient[n, m] + 1))] /. Thread[vars -> vars^m]; p = O[x]^n + x u[1, 1] - x^2 + (u[2, 1] - u[1, 2])/2 + Sum[v[[i]] Sum[EulerPhi[d] u[d, i/d]/i, {d, Divisors[i]}], {i, 3, Length[v]}]; Drop[CoefficientList[p, x], 3]];
    DissectionsModCyclic[Boole[PrimeQ[#]]& /@ Range[1, 31]] (* Jean-François Alcover, Sep 26 2019, after Andrew Howroyd *)
  • PARI
    \\ number of dissections into parts defined by set.
    DissectionsModCyclic(v)={my(n=#v);
    my(q=vector(n)); q[1]=serreverse(x-sum(i=3, #v, x^i*v[i])/x + O(x*x^n));
    for(i=2, n, q[i]=q[i-1]*q[1]);
    my(vars=variables(q[1]));
    my(u(m, r)=substvec(q[r]+O(x^(n\m+1)), vars, apply(t->t^m, vars)));
    my(p=O(x*x^n) + x*u(1,1) - x^2 + (u(2,1)-u(1,2))/2 + sum(i=3, #v, my(c=v[i]); if(c,c*sumdiv(i, d, eulerphi(d)*u(d,i/d))/i)));
    vector(n, i, polcoeff(p, i))}
    DissectionsModCyclic(apply(i->isprime(i), [1..30]))
Previous Showing 11-13 of 13 results.