cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 47 results. Next

A382214 Number of normal multisets of size n that can be partitioned into a set of sets.

Original entry on oeis.org

1, 1, 1, 3, 5, 11, 23, 48, 101, 210, 436, 894
Offset: 0

Views

Author

Gus Wiseman, Mar 29 2025

Keywords

Comments

First differs from A382216 at a(9) = 210, A382216(9) = 208.
We call a multiset or multiset partition normal iff it covers an initial interval of positive integers. The size of a multiset is the number of elements, counting multiplicity.

Examples

			The normal multiset {1,1,1,1,2,2,3,3,3} has partition {{1},{3},{1,2},{1,3},{1,2,3}}, so is counted under a(9).
The a(1) = 1 through a(5) = 11 multisets:
  {1}  {1,2}  {1,1,2}  {1,1,2,2}  {1,1,1,2,3}
              {1,2,2}  {1,1,2,3}  {1,1,2,2,3}
              {1,2,3}  {1,2,2,3}  {1,1,2,3,3}
                       {1,2,3,3}  {1,1,2,3,4}
                       {1,2,3,4}  {1,2,2,2,3}
                                  {1,2,2,3,3}
                                  {1,2,2,3,4}
                                  {1,2,3,3,3}
                                  {1,2,3,3,4}
                                  {1,2,3,4,4}
                                  {1,2,3,4,5}
		

Crossrefs

Factorizations of this type are counted by A050326, distinct sums A381633.
Normal multiset partitions of this type are counted by A116539, distinct sums A381718.
The complement is counted by A292432.
Twice-partitions of this type are counted by A358914, distinct sums A279785.
The strong version is A381996, complement A292444.
For integer partitions we have A382077, ranks A382200, complement A382078, ranks A293243.
For distinct sums we have A382216, complement A382202.
The case of a unique choice is counted by A382458, distinct sums A382459.
A000670 counts patterns, ranked by A055932 and A333217, necklace A019536.
A001055 count factorizations, strict A045778.
Normal multiset partitions: A034691, A035310, A255906.
Set systems: A050342, A296120, A318361.
Set multipartitions: A089259, A270995, A296119, A318360.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]] /@ Subsets[Range[n-1]+1]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]& /@ sps[Range[Length[mset]]]];
    Table[Length[Select[allnorm[n],Select[mps[#], UnsameQ@@#&&And@@UnsameQ@@@#&]!={}&]],{n,0,5}]

A050345 Number of ways to factor n into distinct factors with one level of parentheses.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 6, 1, 3, 3, 4, 1, 6, 1, 6, 3, 3, 1, 13, 1, 3, 3, 6, 1, 12, 1, 7, 3, 3, 3, 15, 1, 3, 3, 13, 1, 12, 1, 6, 6, 3, 1, 25, 1, 6, 3, 6, 1, 13, 3, 13, 3, 3, 1, 31, 1, 3, 6, 12, 3, 12, 1, 6, 3, 12, 1, 37, 1, 3, 6, 6, 3, 12, 1, 25, 4, 3, 1, 31, 3, 3, 3, 13, 1, 31, 3, 6, 3, 3
Offset: 1

Views

Author

Christian G. Bower, Oct 15 1999

Keywords

Comments

First differs from A296120 at a(36) = 15, A296120(36) = 14. - Gus Wiseman, Apr 27 2025
Each "part" in parentheses is distinct from all others at the same level. Thus (3*2)*(2) is allowed but (3)*(2*2) and (3*2*2) are not.
a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3,1).

Examples

			12 = (12) = (6*2) = (6)*(2) = (4*3) = (4)*(3) = (3*2)*(2).
From _Gus Wiseman_, Apr 26 2025: (Start)
This is the number of ways to partition a factorization of n (counted by A001055) into a set of sets. For example, the a(12) = 6 choices are:
  {{2},{2,3}}
  {{2},{6}}
  {{3},{4}}
  {{2,6}}
  {{3,4}}
  {{12}}
(End)
		

Crossrefs

For multisets of multisets we have A050336.
For integer partitions we have a(p^k) = A050342(k), see A001970, A089259, A261049.
For normal multiset partitions see A116539, A292432, A292444, A381996, A382214, A382216.
The case of a unique choice (positions of 1) is A166684.
Twice-partitions of this type are counted by A358914, see A270995, A281113, A294788.
For sets of multisets we have A383310 (distinct products A296118).
For multisets of sets we have we have A383311, see A296119.
A001055 counts factorizations, strict A045778.
A050320 counts factorizations into squarefree numbers, distinct A050326.
A302494 gives MM-numbers of sets of sets.
A382077 counts partitions that can be partitioned into a sets of sets, ranks A382200.
A382078 counts partitions that cannot be partitioned into a sets of sets, ranks A293243.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}}, Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d, Rest[Divisors[n]]}]];
    sps[{}]:={{}};sps[set:{i_,_}] := Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]] /@ Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort /@ (#/.x_Integer:>set[[x]])]& /@ sps[Range[Length[set]]]];
    Table[Sum[Length[Select[mps[y], UnsameQ@@#&&And@@UnsameQ@@@#&]], {y,facs[n]}],{n,30}] (* Gus Wiseman, Apr 26 2025 *)

Formula

Dirichlet g.f.: Product_{n>=2}(1+1/n^s)^A045778(n).
a(n) = A050346(A025487^(-1)(A046523(n))), where A025487^(-1) is the inverse with A025487^(-1)(A025487(n))=n. - R. J. Mathar, May 25 2017
a(n) = A050346(A101296(n)). - Antti Karttunen, May 25 2017

A382079 Number of integer partitions of n that can be partitioned into a set of sets in exactly one way.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 3, 4, 6, 5, 10, 9, 13, 14, 21, 20, 32, 31, 42, 47, 63, 62, 90, 94, 117, 138, 170, 186, 235, 260, 315, 363, 429, 493, 588, 674, 795, 901, 1060, 1209, 1431, 1608, 1896, 2152, 2515, 2854, 3310, 3734, 4368, 4905, 5686
Offset: 0

Views

Author

Gus Wiseman, Mar 20 2025

Keywords

Examples

			The unique multiset partition for (3222111) is {{1},{2},{1,2},{1,2,3}}.
The a(1) = 1 through a(12) = 13 partitions:
  1  2  3  4    5    6     7    8      9      A      B      C
           211  221  411   322  332    441    433    443    552
                311  2211  331  422    522    442    533    633
                           511  611    711    622    551    822
                                3311   42111  811    722    A11
                                32111         3322   911    4422
                                              4411   42221  5511
                                              32221  53111  33321
                                              43111  62111  52221
                                              52111         54111
                                                            63111
                                                            72111
                                                            3222111
		

Crossrefs

Normal multiset partitions of this type are counted by A116539, see A381718.
These partitions are ranked by A293511.
MM-numbers of these multiset partitions (sets of sets) are A302494, see A302478, A382201.
Twice-partitions of this type (sets of sets) are counted by A358914, see A279785.
For at least one choice we have A382077 (ranks A382200), see A381992 (ranks A382075).
For no choices we have A382078 (ranks A293243), see A381990 (ranks A381806).
For distinct block-sums instead of blocks we have A382460, ranked by A381870.
Set multipartitions: A089259, A116540, A270995, A296119, A318360.
A000041 counts integer partitions, strict A000009.
A050320 counts multiset partitions of prime indices into sets.
A050326 counts multiset partitions of prime indices into distinct sets, see A381633.
A265947 counts refinement-ordered pairs of integer partitions.

Programs

  • Mathematica
    ssfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[ssfacs[n/d],Min@@#>d&],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
    Table[Length[Select[IntegerPartitions[n],Length[ssfacs[Times@@Prime/@#]]==1&]],{n,0,15}]

Extensions

a(21)-a(50) from Bert Dobbelaere, Mar 29 2025

A296118 Number of ways to choose a factorization of each factor in a strict factorization of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 5, 2, 3, 1, 8, 1, 3, 3, 8, 1, 8, 1, 8, 3, 3, 1, 20, 2, 3, 5, 8, 1, 12, 1, 18, 3, 3, 3, 23, 1, 3, 3, 20, 1, 12, 1, 8, 8, 3, 1, 45, 2, 8, 3, 8, 1, 20, 3, 20, 3, 3, 1, 38, 1, 3, 8, 34, 3, 12, 1, 8, 3, 12, 1, 66, 1, 3, 8, 8, 3, 12, 1, 45, 8, 3
Offset: 1

Views

Author

Gus Wiseman, Dec 05 2017

Keywords

Examples

			The a(12) = 8 twice-factorizations are (2)*(2*3), (2)*(6), (3)*(2*2), (3)*(4), (2*2*3), (2*6), (3*4), (12).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Sum[Times@@(Length[facs[#]]&/@f),{f,Select[facs[n],UnsameQ@@#&]}],{n,100}]
  • PARI
    A001055(n, m=n) = if(1==n, 1, sumdiv(n, d, if((d>1)&&(d<=m), A001055(n/d, d))));
    A296118(n, m=n) = ((n<=m)*A001055(n) + sumdiv(n, d, if((d>1)&&(d<=m)&&(dA001055(d)*A296118(n/d, d-1)))); \\ Antti Karttunen, Oct 08 2018

Formula

Dirichlet g.f.: Product_{n > 1}(1 + A001055(n)/n^s).

A381435 Numbers appearing more than once in A381431 (section-sum partition of prime indices).

Original entry on oeis.org

5, 7, 11, 13, 17, 19, 23, 25, 26, 29, 31, 34, 37, 38, 39, 41, 43, 46, 47, 49, 51, 52, 53, 57, 58, 59, 61, 62, 65, 67, 68, 69, 71, 73, 74, 76, 79, 82, 83, 85, 86, 87, 89, 91, 92, 93, 94, 95, 97, 101, 103, 104, 106, 107, 109, 111, 113, 115, 116, 117, 118, 119
Offset: 1

Views

Author

Gus Wiseman, Feb 27 2025

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The section-sum partition (A381436) of a multiset or partition y is defined as follows: (1) determine and remember the sum of all distinct parts, (2) remove one instance of each distinct part, (3) repeat until no parts are left. The remembered values comprise the section-sum partition. For example, starting with (3,2,2,1,1) we get (6,3).
Equivalently, the k-th part of the section-sum partition is the sum of all (distinct) parts that appear at least k times. Compare to the definition of the conjugate of a partition, where we count parts >= k.
The conjugate of a section-sum partition is a Look-and-Say partition; see A048767, union A351294, count A239455.

Examples

			The terms together with their prime indices begin:
   5: {3}
   7: {4}
  11: {5}
  13: {6}
  17: {7}
  19: {8}
  23: {9}
  25: {3,3}
  26: {1,6}
  29: {10}
  31: {11}
  34: {1,7}
  37: {12}
  38: {1,8}
  39: {2,6}
  41: {13}
  43: {14}
  46: {1,9}
  47: {15}
  49: {4,4}
  51: {2,7}
  52: {1,1,6}
		

Crossrefs

- fixed points are A000961, A000005
- conjugate is A048767, fixed points A048768, A217605
- all numbers present are A381432, conjugate A351294
- numbers missing are A381433, conjugate A351295
- numbers appearing only once are A381434, conjugate A381540
- numbers appearing more than once are A381435 (this), conjugate A381541
A000040 lists the primes, differences A001223.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A122111 represents conjugation in terms of Heinz numbers.
A239455 counts section-sum partitions, complement A351293.
A381436 lists section-sum partition of prime indices, conjugate A381440.
Set multipartitions: A050320, A089259, A116540, A296119, A318360, A318361.
Partition ideals: A300383, A317141, A381078, A381441, A381452, A381454.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    egs[y_]:=If[y=={},{},Table[Total[Select[Union[y],Count[y,#]>=i&]],{i,Max@@Length/@Split[y]}]];
    Select[Range[100],Count[Times@@Prime/@#&/@egs/@IntegerPartitions[Total[prix[#]]],#]>1&]

Formula

The complement is A381434 U A381433.

A381996 Number of non-isomorphic multisets of size n that can be partitioned into a set of sets.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 9, 13, 18, 25, 34, 47
Offset: 0

Views

Author

Gus Wiseman, Mar 31 2025

Keywords

Comments

First differs from A382523 at a(12) = 47, A382523(12) = 45.
We call a multiset non-isomorphic iff it covers an initial interval of positive integers with weakly decreasing multiplicities. The size of a multiset is the number of elements, counting multiplicity.

Examples

			Differs from A382523 in counting the following under a(12):
  {1,1,1,1,1,1,2,2,3,3,4,5} with partition {{1},{1,2},{1,3},{1,4},{1,5},{1,2,3}}
  {1,1,1,1,2,2,2,2,3,3,3,3} with partition {{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Factorizations of this type are counted by A050326, distinct sums A381633.
Normal multiset partitions of this type are counted by A116539, distinct sums A381718.
The complement is counted by A292444.
Twice-partitions of this type are counted by A358914, distinct sums A279785.
For integer partitions we have A382077, ranks A382200, complement A382078, ranks A293243.
Weak version is A382214, complement A292432, distinct sums A382216, complement A382202.
For distinct sums we have A382523, complement A382430.
Normal multiset partitions: A034691, A035310, A116540, A255906.
Set systems: A050342, A296120, A318361.
Set multipartitions: A089259, A270995, A296119, A318360.

Programs

  • Mathematica
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n];
    sps[{}]:={{}};sps[set:{i_,_}] := Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort /@ (#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[strnorm[n], Select[mps[#], UnsameQ@@#&&And@@UnsameQ@@@#&]!={}&]], {n,0,5}]

A382204 Number of normal multiset partitions of weight n into constant blocks with a common sum.

Original entry on oeis.org

1, 1, 2, 3, 4, 4, 7, 5, 8, 8, 10, 8, 15, 9, 14, 15, 17, 13, 22, 14, 25, 21, 23, 19, 34, 24, 29, 28, 37, 27, 45, 29, 44, 38, 43, 43, 59, 40, 51, 48, 69, 48, 71, 52, 73, 69, 72, 61, 93, 72, 91, 77, 99, 78, 105, 95, 119, 95, 113, 96, 146, 107, 126, 123, 151, 130
Offset: 0

Views

Author

Gus Wiseman, Mar 26 2025

Keywords

Comments

We call a multiset or multiset partition normal iff it covers an initial interval of positive integers. The weight of a multiset partition is the sum of sizes of its blocks.

Examples

			The a(1) = 1 through a(6) = 7 multiset partitions:
  {1} {11}   {111}     {1111}       {11111}         {111111}
      {1}{1} {2}{11}   {11}{11}     {2}{11}{11}     {111}{111}
             {1}{1}{1} {2}{2}{11}   {2}{2}{2}{11}   {22}{1111}
                       {1}{1}{1}{1} {1}{1}{1}{1}{1} {11}{11}{11}
                                                    {2}{2}{11}{11}
                                                    {2}{2}{2}{2}{11}
                                                    {1}{1}{1}{1}{1}{1}
The a(1) = 1 through a(7) = 5 factorizations:
  2  4    8      16       32         64           128
     2*2  3*4    4*4      3*4*4      8*8          3*4*4*4
          2*2*2  3*3*4    3*3*3*4    9*16         3*3*3*4*4
                 2*2*2*2  2*2*2*2*2  4*4*4        3*3*3*3*3*4
                                     3*3*4*4      2*2*2*2*2*2*2
                                     3*3*3*3*4
                                     2*2*2*2*2*2
		

Crossrefs

Without a common sum we have A055887.
Twice-partitions of this type are counted by A279789.
Without constant blocks we have A326518.
For distinct block-sums and strict blocks we have A381718.
Factorizations of this type are counted by A381995.
For distinct instead of equal block-sums we have A382203.
For strict instead of constant blocks we have A382429.
A000670 counts patterns, ranked by A055932 and A333217, necklace A019536.
A001055 count multiset partitions of prime indices, strict A045778.
A089259 counts set multipartitions of integer partitions.
A255906 counts normal multiset partitions, row sums of A317532.
A321469 counts multiset partitions with distinct block-sums, ranks A326535.
Normal multiset partitions: A035310, A304969, A356945.
Set multipartitions: A116540, A270995, A296119, A318360.
Set multipartitions with distinct sums: A279785, A381806, A381870.
Constant blocks with distinct sums: A381635, A381636, A381716.

Programs

  • Mathematica
    allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
    Table[Length[Join@@(Select[mps[#],SameQ@@Total/@#&&And@@SameQ@@@#&]&/@allnorm[n])],{n,0,5}]
  • PARI
    h(s,x)=my(t=0,p=1,k=1);while(s%k==0,p*=1/(1-x^(s/k))-1;t+=p;k+=1);t
    lista(n)=Vec(1+sum(s=1,n,h(s,x+O(x*x^n)))) \\ Christian Sievers, Apr 05 2025

Formula

G.f.: 1 + Sum_{s>=1} Sum_{k=1..A055874(s)} Product_{v=1..k} (1/(1-x^(s/v)) - 1). - Christian Sievers, Apr 05 2025

Extensions

Terms a(16) and beyond from Christian Sievers, Apr 04 2025

A381434 Numbers appearing only once in A381431 (section-sum partition of prime indices).

Original entry on oeis.org

1, 2, 3, 4, 8, 9, 10, 14, 15, 16, 20, 22, 27, 28, 32, 33, 35, 40, 44, 45, 50, 55, 56, 64, 75, 77, 80, 81, 88, 98, 99, 100, 112, 128, 130, 135, 160, 170, 175, 176, 182, 190, 195, 196, 200
Offset: 1

Views

Author

Gus Wiseman, Feb 27 2025

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The section-sum partition (A381436) of a multiset or partition y is defined as follows: (1) determine and remember the sum of all distinct parts, (2) remove one instance of each distinct part, (3) repeat until no parts are left. The remembered values comprise the section-sum partition. For example, starting with (3,2,2,1,1) we get (6,3).
Equivalently, the k-th part of the section-sum partition is the sum of all (distinct) parts that appear at least k times. Compare to the definition of the conjugate of a partition, where we count parts >= k.
The conjugate of a section-sum partition is a Look-and-Say partition; see A048767, union A351294, count A239455.

Examples

			The terms together with their prime indices begin:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    8: {1,1,1}
    9: {2,2}
   10: {1,3}
   14: {1,4}
   15: {2,3}
   16: {1,1,1,1}
   20: {1,1,3}
   22: {1,5}
   27: {2,2,2}
   28: {1,1,4}
   32: {1,1,1,1,1}
		

Crossrefs

- fixed points are A000961, A000005
- conjugate is A048767, fixed points A048768, A217605
- all numbers present are A381432, conjugate A351294
- numbers missing are A381433, conjugate A351295
- numbers appearing only once are A381434 (this), conjugate A381540
- numbers appearing more than once are A381435, conjugate A381541
A000040 lists the primes, differences A001223.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A122111 represents conjugation in terms of Heinz numbers.
A239455 counts section-sum partitions, complement A351293.
A381436 lists section-sum partition of prime indices, conjugate A381440.
Set multipartitions: A050320, A089259, A116540, A296119, A318360, A318361.
Partition ideals: A300383, A317141, A381078, A381441, A381452, A381454.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    egs[y_]:=If[y=={},{},Table[Total[Select[Union[y],Count[y,#]>=i&]],{i,Max@@Length/@Split[y]}]];
    Select[Range[100],Count[Times@@Prime/@#&/@egs/@IntegerPartitions[Total[prix[#]]],#]==1&]

Formula

The complement is A381433 U A381435.

A381438 Triangle read by rows where T(n>0,k>0) is the number of integer partitions of n whose section-sum partition ends with k.

Original entry on oeis.org

1, 1, 1, 1, 0, 2, 2, 1, 0, 2, 3, 1, 0, 0, 3, 4, 1, 2, 0, 0, 4, 7, 2, 1, 0, 0, 0, 5, 9, 4, 1, 2, 0, 0, 0, 6, 13, 4, 4, 1, 0, 0, 0, 0, 8, 18, 6, 3, 2, 3, 0, 0, 0, 0, 10, 26, 9, 5, 2, 2, 0, 0, 0, 0, 0, 12, 32, 12, 8, 4, 2, 4, 0, 0, 0, 0, 0, 15
Offset: 1

Views

Author

Gus Wiseman, Mar 01 2025

Keywords

Comments

The section-sum partition (A381436) of a multiset or partition y is defined as follows: (1) determine and remember the sum of all distinct parts, (2) remove one instance of each distinct part, (3) repeat until no parts are left. The remembered values comprise the section-sum partition. For example, starting with (3,2,2,1,1) we get (6,3).
Equivalently, the k-th part of the section-sum partition is the sum of all (distinct) parts that appear at least k times. Compare to the definition of the conjugate of a partition, where we count parts >= k.
The conjugate of a section-sum partition is a Look-and-Say partition; see A048767, union A351294, count A239455.

Examples

			Triangle begins:
   1
   1  1
   1  0  2
   2  1  0  2
   3  1  0  0  3
   4  1  2  0  0  4
   7  2  1  0  0  0  5
   9  4  1  2  0  0  0  6
  13  4  4  1  0  0  0  0  8
  18  6  3  2  3  0  0  0  0 10
  26  9  5  2  2  0  0  0  0  0 12
  32 12  8  4  2  4  0  0  0  0  0 15
  47 16 11  4  3  2  0  0  0  0  0  0 18
  60 23 12  8  3  2  5  0  0  0  0  0  0 22
  79 27 20  7  9  4  3  0  0  0  0  0  0  0 27
 Row n = 9 counts the following partitions:
  (711)        (522)    (333)     (441)  .  .  .  .  (9)
  (6111)       (4221)   (3321)                       (81)
  (5211)       (3222)   (32211)                      (72)
  (51111)      (22221)  (222111)                     (63)
  (4311)                                             (621)
  (42111)                                            (54)
  (411111)                                           (531)
  (33111)                                            (432)
  (321111)
  (3111111)
  (2211111)
  (21111111)
  (111111111)
		

Crossrefs

Last column (k=n) is A000009.
Row sums are A000041.
Row sums without the last column (k=n) are A047967.
For first instead of last part we have A116861, rank A066328.
First column (k=1) is A241131 shifted right and starting with 1 instead of 0.
Using Heinz numbers, this statistic is given by A381437.
A122111 represents conjugation in terms of Heinz numbers.
A239455 counts section-sum partitions, complement A351293.
Set multipartitions: A050320, A089259, A116540, A270995, A296119, A318360, A318361.
Section-sum partition: A381431, A381432, A381433, A381434, A381435, A381436.
Look-and-Say partition: A048767, A351294, A351295, A381440.

Programs

  • Mathematica
    egs[y_]:=If[y=={},{},Table[Total[Select[Union[y],Count[y,#]>=i&]],{i,Max@@Length/@Split[y]}]];
    Table[Length[Select[IntegerPartitions[n],k==Last[egs[#]]&]],{n,15},{k,n}]

A382429 Number of normal multiset partitions of weight n into sets with a common sum.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 13, 26, 57, 113, 283, 854, 2401, 6998, 24072, 85061, 308956, 1190518, 4770078, 19949106, 87059592
Offset: 0

Views

Author

Gus Wiseman, Mar 26 2025

Keywords

Comments

We call a multiset or multiset partition normal iff it covers an initial interval of positive integers. The weight of a multiset partition is the sum of sizes of its blocks.

Examples

			The a(1) = 1 through a(6) = 13 partitions:
  {1} {12}   {123}     {1234}       {12345}         {123456}
      {1}{1} {3}{12}   {12}{12}     {24}{123}       {123}{123}
             {1}{1}{1} {14}{23}     {34}{124}       {125}{134}
                       {3}{3}{12}   {3}{12}{12}     {135}{234}
                       {1}{1}{1}{1} {5}{14}{23}     {145}{235}
                                    {3}{3}{3}{12}   {12}{12}{12}
                                    {1}{1}{1}{1}{1} {14}{14}{23}
                                                    {14}{23}{23}
                                                    {16}{25}{34}
                                                    {3}{3}{12}{12}
                                                    {5}{5}{14}{23}
                                                    {3}{3}{3}{3}{12}
                                                    {1}{1}{1}{1}{1}{1}
The corresponding factorizations:
  2  6    30     210      2310       30030
     2*2  5*6    6*6      21*30      30*30
          2*2*2  14*15    35*42      6*6*6
                 5*5*6    5*6*6      66*70
                 2*2*2*2  5*5*5*6    110*105
                          11*14*15   154*165
                          2*2*2*2*2  5*5*6*6
                                     14*14*15
                                     14*15*15
                                     26*33*35
                                     5*5*5*5*6
                                     11*11*14*15
                                     2*2*2*2*2*2
		

Crossrefs

Without the common sum we have A116540 (normal set multipartitions).
Twice-partitions of this type are counted by A279788.
For common sizes instead of sums we have A317583.
Without strict blocks we have A326518, non-strict blocks A326517.
For a common length instead of sum we have A331638.
For distinct instead of equal block-sums we have A381718.
Factorizations of this type are counted by A382080.
For distinct block-sums and constant blocks we have A382203.
For constant instead of strict blocks we have A382204.
A000670 counts patterns, ranked by A055932 and A333217, necklace A019536.
A001055 count multiset partitions of prime indices, strict A045778.
A321469 counts multiset partitions with distinct block-sums, ranks A326535.
Normal multiset partitions: A035310, A255906, A304969, A317532.
Set multipartitions: A089259, A116539, A270995, A296119, A318360.
Set multipartitions with distinct sums: A279785, A381806, A381870.
Constant blocks with distinct sums: A381635, A381636, A381716.

Programs

  • Mathematica
    allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
    Table[Length[Join@@(Select[mps[#],SameQ@@Total/@#&&And@@UnsameQ@@@#&]&/@allnorm[n])],{n,0,5}]

Extensions

a(11) from Robert Price, Mar 30 2025
a(12)-a(20) from Christian Sievers, Apr 06 2025
Previous Showing 21-30 of 47 results. Next