cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A299212 Expansion of 1/(1 - x*Product_{k>=1} 1/(1 + x^k)^k).

Original entry on oeis.org

1, 1, 0, -2, -5, -4, 4, 21, 35, 23, -47, -165, -239, -78, 479, 1273, 1508, -138, -4429, -9451, -8845, 6207, 37937, 67123, 45144, -83355, -308078, -455109, -166872, 873799, 2393041, 2916869, -73472, -8133572, -17828640, -17294146, 10383571, 70275162, 127401305, 90368779, -147825714
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 05 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[1/(1 - x Product[1/(1 + x^k)^k, {k, 1, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: 1/(1 - x*Product_{k>=1} 1/(1 + x^k)^k).
a(0) = 1; a(n) = Sum_{k=1..n} A255528(k-1)*a(n-k).

A288515 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} ((1 + x^j)/(1 - x^j))^k.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 4, 4, 0, 1, 6, 12, 8, 0, 1, 8, 24, 32, 14, 0, 1, 10, 40, 80, 76, 24, 0, 1, 12, 60, 160, 234, 168, 40, 0, 1, 14, 84, 280, 552, 624, 352, 64, 0, 1, 16, 112, 448, 1110, 1712, 1552, 704, 100, 0, 1, 18, 144, 672, 2004, 3912, 4896, 3648, 1356, 154, 0, 1, 20, 180, 960, 3346, 7896, 12600, 13120, 8184, 2532, 232, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 10 2017

Keywords

Examples

			Square array begins:
1,   1,    1,    1,     1,     1,  ...
0,   2,    4,    6,     8,    10,  ...
0,   4,   12,   24,    40,    60,  ...
0,   8,   32,   80,   160,   280,  ...
0,  14,   76,  234,   552,  1110,  ...
0,  24,  168,  624,  1712,  3913,  ...
		

Crossrefs

Columns k=0-24 give: A000007, A015128, A001934, A004404 (alternating values), A284286, A004406-A004425 (alternating values).
Rows n=0-2 give: A000012, A005843, A046092.
Main diagonal gives A270919.
Antidiagonal sums give A299108.

Programs

  • Julia
    # JacobiTheta4 is defined in A002448.
    A288515Column(k, len) = JacobiTheta4(len, -k)
    for k in 0:8 A288515Column(k, 8) |> println end # Peter Luschny, Mar 12 2018
  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[((1 + x^i)/(1 - x^i))^k, {i, 1, n}], {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[1/EllipticTheta[4, 0, x]^k, {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten

Formula

G.f. of column k: Product_{j>=1} ((1 + x^j)/(1 - x^j))^k.
G.f. of column k: 1/theta_4(x)^k, where theta_4() is the Jacobi theta function.
For asymptotics of column k see comment from Vaclav Kotesovec in A001934.

A302020 Expansion of 1/(1 - x*Product_{k>=1} (1 + x^(2*k))/(1 - x^(2*k-1))).

Original entry on oeis.org

1, 1, 2, 5, 12, 28, 66, 156, 367, 863, 2031, 4779, 11244, 26456, 62248, 146462, 344608, 810822, 1907769, 4488757, 10561519, 24850017, 58469179, 137571128, 323688747, 761601701, 1791959579, 4216270956, 9920391613, 23341519267, 54919860316, 129219997322, 304039515247, 715369360371
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 30 2018

Keywords

Crossrefs

Antidiagonal sums of A296068.

Programs

  • Mathematica
    nmax = 33; CoefficientList[Series[1/(1 - x Product[(1 + x^(2 k))/(1 - x^(2 k - 1)), {k, 1, nmax}]), {x, 0, nmax}], x]
    nmax = 33; CoefficientList[Series[1/(1 + (1 - x) QPochhammer[-1, x^2]/(2 QPochhammer[1/x, x^2])), {x, 0, nmax}], x]
    nmax = 33; CoefficientList[Series[1/(1 - x EllipticTheta[2, 0, x]/(Sqrt[2] x^(1/8) EllipticTheta[2, Pi/4, Sqrt[x]])), {x, 0, nmax}], x]

Formula

G.f.: 1/(1 - x*Product_{k>=1} (1 - x^(4*k))/(1 - x^k)).
G.f.: 1/(1 - x*Product_{k>=1} (1 + x^k + x^(2*k) + x^(3*k))).
a(0) = 1; a(n) = Sum_{k=1..n} A001935(k-1)*a(n-k).

A307901 Expansion of 1/(1 - x * theta_4(x)), where theta_4() is the Jacobi theta function.

Original entry on oeis.org

1, 1, -1, -3, -1, 7, 11, -5, -33, -25, 53, 123, 9, -297, -363, 323, 1273, 657, -2415, -4407, 957, 12069, 11465, -16887, -47915, -12939, 104431, 152029, -85529, -476579, -333905, 803237, 1752799, 11597, -4349949, -5019855, 5068735, 18311655, 8392559, -35953969
Offset: 0

Views

Author

Ilya Gutkovskiy, May 04 2019

Keywords

Crossrefs

Programs

  • Maple
    S:= series(1/(1-x*JacobiTheta4(0,x)),x,101):
    seq(coeff(S,x,j),j=0..100);  # Robert Israel, Nov 03 2019
  • Mathematica
    nmax = 39; CoefficientList[Series[1/(1 - x EllipticTheta[4, 0, x]), {x, 0, nmax}], x]
    nmax = 39; CoefficientList[Series[1/(1 - x Product[(1 - x^k)/(1 + x^k), {k, 1, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: Sum_{k>=0} x^k * theta_4(x)^k.
G.f.: 1/(1 - x * Sum_{k=-oo..oo} (-1)^k * x^(k^2)).
G.f.: 1/(1 - x * Product_{k>=1} (1 - x^k)/(1 + x^k)).

A320654 Expansion of 1/(2 - Product_{k>=1} (1 + x^k)/(1 - x^k)).

Original entry on oeis.org

1, 2, 8, 32, 126, 496, 1952, 7680, 30216, 118882, 467728, 1840224, 7240160, 28485616, 112073536, 440941056, 1734834302, 6825515600, 26854243752, 105655081568, 415688349456, 1635480294080, 6434618135968, 25316300481024, 99604212169632, 391881866363890, 1541816293103184
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 18 2018

Keywords

Comments

Invert transform of A015128.

Crossrefs

Programs

  • Maple
    a:=series(1/(2-mul((1+x^k)/(1-x^k),k=1..100)),x=0,27): seq(coeff(a,x,n),n=0..26); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 26; CoefficientList[Series[1/(2 - Product[(1 + x^k)/(1 - x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
    nmax = 26; CoefficientList[Series[1/(2 - 1/EllipticTheta[4, 0, x]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[Sum[PartitionsP[k - j] PartitionsQ[j], {j, 0, k}] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 26}]

Formula

G.f.: 1/(2 - 1/theta_4(x)), where theta_() is the Jacobi theta function.
a(0) = 1; a(n) = Sum_{k=1..n} A015128(k)*a(n-k).
Previous Showing 11-15 of 15 results.