cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 38 results. Next

A305831 Number of connected components of the strict integer partition with FDH number n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 2, 1, 1, 2, 1, 3, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 3, 2, 2, 1, 2, 1, 2, 2, 1, 1, 3, 1, 2, 1, 3, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 10 2018

Keywords

Comments

Given a finite set S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor. For example, G({6,14,15,35}) is a 4-cycle. A set S is said to be connected if G(S) is a connected graph.

Examples

			Let f = A050376. The FD-factorization of 1683 is 9*11*17 = f(6)*f(7)*f(10). The connected components of {6,7,10} are {{7},{6,10}}, so a(1683) = 2.
		

Crossrefs

Programs

  • Mathematica
    FDfactor[n_]:=If[n===1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    nn=200;FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
    Table[Length[zsm[FDfactor[n]/.FDrules]],{n,nn}]

A305832 Number of connected components of the n-th FDH set-system.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 2, 1, 1, 2, 1, 3, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 3, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 3, 2, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 10 2018

Keywords

Comments

Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. Every positive integer n has a unique factorization of the form n = f(s_1)*...*f(s_k) where the s_i are strictly increasing positive integers. The n-th FDH set-system is obtained by repeating this factorization on each index s_i.

Examples

			Let f = A050376. The FD-factorization of 765 is 5*9*17 or f(4)*f(6)*f(10) = f(4)*f(2*3)*f(2*5) with connected components {{{4}},{{2,3},{2,5}}}, so a(765) = 2.
		

Crossrefs

Programs

  • Mathematica
    FDfactor[n_]:=If[n===1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>1]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    nn=100;FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
    Table[Length[csm[FDfactor[#]/.FDrules&/@(FDfactor[n]/.FDrules)]],{n,nn}]

A316210 Number of integer partitions of the n-th Fermi-Dirac prime into Fermi-Dirac primes.

Original entry on oeis.org

1, 1, 2, 2, 4, 7, 11, 17, 31, 37, 54, 109, 152, 283, 380, 878, 1482, 1906, 3101, 3924, 6197, 11915, 14703, 27063, 40016, 48450, 84633, 101419, 121250, 204461, 398916, 551093, 646073, 883626, 1030952, 1397083, 2522506, 3875455, 5128718, 7741307, 8860676
Offset: 1

Views

Author

Gus Wiseman, Jun 26 2018

Keywords

Comments

A Fermi-Dirac prime (A050376) is a number of the form p^(2^k) where p is prime and k >= 0.

Examples

			The a(6) = 7 partitions of 9 into Fermi-Dirac primes are (9), (54), (72), (333), (432), (522), (3222).
		

Crossrefs

Programs

  • Mathematica
    nn=60;
    FDpQ[n_]:=With[{f=FactorInteger[n]},n>1&&Length[f]==1&&MatchQ[FactorInteger[2f[[1,2]]],{{2,_}}]]
    FDprimeList=Select[Range[nn],FDpQ];
    ser=Product[1/(1-x^d),{d,FDprimeList}];
    Table[SeriesCoefficient[ser,{x,0,FDprimeList[[n]]}],{n,Length[FDprimeList]}]

A316211 Number of strict integer partitions of n into Fermi-Dirac primes.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 1, 3, 1, 4, 2, 4, 4, 4, 6, 4, 9, 5, 10, 8, 11, 11, 12, 15, 13, 19, 16, 21, 21, 24, 26, 27, 32, 31, 37, 37, 42, 44, 47, 52, 53, 61, 61, 69, 71, 78, 82, 88, 95, 99, 108, 112, 122, 128, 137, 144, 154, 163, 172, 184, 193, 206, 216, 230, 242, 256
Offset: 0

Views

Author

Gus Wiseman, Jun 26 2018

Keywords

Comments

A Fermi-Dirac prime (A050376) is a number of the form p^(2^k) where p is prime and k >= 0.

Examples

			The a(16) = 9 strict integer partitions of 16 into Fermi-Dirac primes:
(16),
(9,7), (11,5), (13,3),
(7,5,4), (9,4,3), (9,5,2), (11,3,2),
(7,4,3,2).
		

Crossrefs

Programs

  • Mathematica
    nn=60;
    FDpQ[n_]:=With[{f=FactorInteger[n]},n>1&&Length[f]==1&&MatchQ[FactorInteger[2f[[1,2]]],{{2,_}}]]
    FDprimeList=Select[Range[nn],FDpQ];
    ser=Product[1+x^d,{d,FDprimeList}];
    Table[SeriesCoefficient[ser,{x,0,n}],{n,0,nn}]

Formula

O.g.f.: Product_d (1 + x^d) where the product is over all Fermi-Dirac primes (A050376).

A319827 FDH numbers of relatively prime strict integer partitions.

Original entry on oeis.org

2, 6, 8, 10, 12, 14, 18, 20, 21, 22, 24, 26, 28, 30, 32, 33, 34, 35, 38, 40, 42, 44, 46, 48, 50, 52, 54, 55, 56, 57, 58, 60, 62, 63, 66, 68, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 86, 88, 90, 91, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110, 112
Offset: 1

Views

Author

Gus Wiseman, Sep 28 2018

Keywords

Comments

Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. The FDH number of a strict integer partition (y_1, ..., y_k) is f(y_1) * ... * f(y_k).

Examples

			The sequence of all relatively prime strict integer partitions begins: (1), (2,1), (3,1), (4,1), (3,2), (5,1), (6,1), (4,3), (5,2), (7,1), (3,2,1), (8,1), (5,3), (4,2,1).
		

Crossrefs

Programs

  • Mathematica
    nn=200;
    FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}:>2^(m-1)]]]]];
    FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
    Select[Range[nn],GCD@@(FDfactor[#]/.FDrules)==1&]

A299758 Largest FDH number of a strict integer partition of n.

Original entry on oeis.org

1, 2, 3, 6, 8, 12, 24, 30, 42, 60, 120, 168, 216, 280, 420, 840, 1080, 1512, 1890, 2520, 3780, 7560, 9240, 11880, 16632, 20790, 27720, 41580, 83160, 98280, 120960, 154440, 216216, 270270, 360360, 540540, 1081080, 1330560, 1572480, 1921920, 2471040, 3459456, 4324320
Offset: 1

Views

Author

Gus Wiseman, Feb 18 2018

Keywords

Comments

Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. Every positive integer n has a unique factorization of the form n = f(s_1)*...*f(s_k) where the s_i are strictly increasing positive integers. This determines a unique strict integer partition (s_k...s_1) whose FDH number is then defined to be n.

Examples

			Sequence of strict integer partitions realizing each maximum begins: () (1) (2) (21) (31) (32) (321) (421) (521) (432) (4321) (5321) (6321) (5431) (5432) (54321) (64321) (65321) (65421) (65431) (65432).
		

Crossrefs

Programs

  • Mathematica
    nn=150;
    FDprimeList=Select[Range[nn],MatchQ[FactorInteger[#],{{?PrimeQ,?(MatchQ[FactorInteger[2#],{{2,_}}]&)}}]&];
    Table[Max[Times@@FDprimeList[[#]]&/@Select[IntegerPartitions[n],UnsameQ@@#&]],{n,0,Length[FDprimeList]}]

A316265 FDH numbers of strict integer partitions with prime parts.

Original entry on oeis.org

1, 3, 4, 7, 11, 12, 19, 21, 25, 28, 33, 41, 44, 47, 57, 61, 75, 76, 77, 83, 84, 97, 100, 121, 123, 132, 133, 139, 141, 151, 164, 169, 175, 183, 188, 197, 209, 228, 231, 233, 241, 244, 249, 271, 275, 287, 289, 291, 300, 307, 308, 329, 332, 347, 361, 363, 388
Offset: 1

Views

Author

Gus Wiseman, Jun 28 2018

Keywords

Comments

Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. The FDH number of a strict integer partition (y_1,...,y_k) is f(y_1)*...*f(y_k).

Examples

			Sequence of strict integer partitions with prime parts, preceded by their FDH numbers, begins:
   1: ()
   3: (2)
   4: (3)
   7: (5)
  11: (7)
  12: (3,2)
  19: (11)
  21: (5,2)
  25: (13)
  28: (5,3)
  33: (7,2)
  41: (17)
  44: (7,3)
  47: (19)
  57: (11,2)
  61: (23)
  75: (13,2)
  76: (11,3)
  77: (7,5)
  83: (29)
  84: (5,3,2)
		

Crossrefs

Programs

  • Mathematica
    nn=100;
    FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
    FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
    Select[Range[nn],And@@PrimeQ/@(FDfactor[#]/.FDrules)&]

A316266 FDH numbers of strict integer partitions with prime parts and prime length.

Original entry on oeis.org

12, 21, 28, 33, 44, 57, 75, 76, 77, 84, 100, 123, 132, 133, 141, 164, 175, 183, 188, 209, 228, 231, 244, 249, 275, 287, 291, 300, 308, 329, 332, 363, 388, 399, 417, 427, 451, 453, 475, 484, 492, 507, 517, 525, 532, 556, 564, 581, 591, 604, 627, 671, 676, 679
Offset: 1

Views

Author

Gus Wiseman, Jun 28 2018

Keywords

Comments

Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. The FDH number of a strict integer partition (y_1,...,y_k) is f(y_1)*...*f(y_k).

Examples

			Sequence of strict integer partitions with prime parts and prime length, preceded by their FDH numbers, begins:
  12: (3,2)
  21: (5,2)
  28: (5,3)
  33: (7,2)
  44: (7,3)
  57: (11,2)
  75: (13,2)
  76: (11,3)
  77: (7,5)
  84: (5,3,2)
		

Crossrefs

Programs

  • Mathematica
    nn=1000;
    FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
    FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
    Select[Range[nn],And[PrimeQ[Length[FDfactor[#]]],And@@PrimeQ/@(FDfactor[#]/.FDrules)]&]

A316267 FDH numbers of strict integer partitions of prime numbers with a prime number of prime parts.

Original entry on oeis.org

12, 21, 57, 123, 249, 417, 532, 699, 867, 1100, 1389, 1463, 1509, 1708, 2049, 2068, 2307, 2324, 2913, 3116, 3147, 3157, 3273, 3325, 3619, 3903, 4227, 4268, 4636, 4821, 5079, 5225, 5324, 5516, 5739, 6308, 6391, 6524, 6621, 6644, 7469, 8092, 8193, 8225, 8457
Offset: 1

Views

Author

Gus Wiseman, Jun 28 2018

Keywords

Comments

Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. The FDH number of a strict integer partition (y_1,...,y_k) is f(y_1)*...*f(y_k).

Examples

			Sequence of strict integer partitions of prime numbers with a prime number of prime parts, preceded by their FDH numbers, begins:
    12: (3,2)
    21: (5,2)
    57: (11,2)
   123: (17,2)
   249: (29,2)
   417: (41,2)
   532: (11,5,3)
   699: (59,2)
   867: (71,2)
  1100: (13,7,3)
  1389: (101,2)
  1463: (11,7,5)
  1509: (107,2)
  1708: (23,5,3)
		

Crossrefs

Programs

  • Mathematica
    nn=1000;
    FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
    FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
    Select[Range[nn],And[PrimeQ[Total[FDfactor[#]/.FDrules]],PrimeQ[Length[FDfactor[#]]],And@@PrimeQ/@(FDfactor[#]/.FDrules)]&]

A319829 FDH numbers of strict integer partitions of odd numbers.

Original entry on oeis.org

2, 4, 6, 7, 10, 11, 12, 16, 18, 19, 20, 21, 25, 26, 30, 31, 33, 34, 35, 36, 41, 46, 47, 48, 52, 53, 54, 55, 56, 57, 58, 60, 61, 63, 68, 71, 74, 75, 78, 79, 80, 83, 86, 88, 90, 91, 92, 93, 95, 97, 98, 99, 102, 103, 105, 108, 109, 116, 118, 119, 121, 123, 125
Offset: 1

Views

Author

Gus Wiseman, Sep 28 2018

Keywords

Comments

Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. The FDH number of a strict integer partition (y_1, ..., y_k) is f(y_1) * ... * f(y_k).

Examples

			The sequence of all strict integer partitions of odd numbers begins: (1), (3), (2,1), (5), (4,1), (7), (3,2), (9), (6,1), (11), (4,3), (5,2), (13), (8,1), (4,2,1), (15), (7,2), (10,1), (5,4), (6,3), (17), (12,1), (19), (9,2), (8,3), (21), (6,2,1), (7,4), (5,3,1), (11,2), (14,1), (4,3,2).
		

Crossrefs

Programs

  • Mathematica
    nn=200;
    FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}:>2^(m-1)]]]]];
    FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
    Select[Range[nn],OddQ[Total[FDfactor[#]/.FDrules]]&]
Previous Showing 21-30 of 38 results. Next