A357863
Numbers whose prime indices do not have strictly increasing run-sums. Heinz numbers of the partitions not counted by A304428.
Original entry on oeis.org
12, 24, 40, 45, 48, 60, 63, 80, 84, 90, 96, 112, 120, 126, 132, 135, 144, 156, 160, 168, 175, 180, 189, 192, 204, 224, 228, 240, 252, 264, 270, 275, 276, 280, 288, 297, 300, 312, 315, 320, 325, 336, 348, 350, 351, 352, 360, 372, 378, 384, 405, 408, 420, 440
Offset: 1
The terms together with their prime indices begin:
12: {1,1,2}
24: {1,1,1,2}
40: {1,1,1,3}
45: {2,2,3}
48: {1,1,1,1,2}
60: {1,1,2,3}
63: {2,2,4}
80: {1,1,1,1,3}
84: {1,1,2,4}
90: {1,2,2,3}
96: {1,1,1,1,1,2}
112: {1,1,1,1,4}
120: {1,1,1,2,3}
126: {1,2,2,4}
132: {1,1,2,5}
135: {2,2,2,3}
144: {1,1,1,1,2,2}
156: {1,1,2,6}
These are the indices of rows in
A354584 that are not strictly increasing.
The weak (not weakly increasing) version is
A357876, counted by
A357878.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],!Less@@Total/@Split[primeMS[#]]&]
A354908
Numbers k such that the k-th composition in standard order (graded reverse-lexicographic, A066099) is collapsible.
Original entry on oeis.org
1, 2, 3, 4, 7, 8, 10, 11, 14, 15, 16, 31, 32, 36, 39, 42, 43, 46, 47, 58, 59, 60, 62, 63, 64, 127, 128, 136, 138, 139, 142, 143, 168, 170, 171, 174, 175, 184, 186, 187, 190, 191, 232, 234, 235, 238, 239, 248, 250, 251, 254, 255, 256, 292, 295, 316, 319, 484
Offset: 1
The terms together with their corresponding compositions begin:
1:(1) 2:(2) 4:(3) 8:(4) 16:(5) 32:(6)
3:(11) 7:(111) 10:(22) 31:(11111) 36:(33)
11:(211) 39:(3111)
14:(112) 42:(222)
15:(1111) 43:(2211)
46:(2112)
47:(21111)
58:(1122)
59:(11211)
60:(1113)
62:(11112)
63:(111111)
The version for Heinz numbers of partitions is
A300273, counted by
A275870.
These compositions are counted by
A353860.
A124767 counts runs in standard compositions.
A334968 counts distinct sums of subsequences of standard compositions.
A351014 counts distinct runs of standard compositions, firsts
A351015.
A354582 counts distinct partial runs of standard compositions, sums
A354907.
-
repcams[q_List]:=repcams[q]=Union[{q},If[UnsameQ@@q,{},Union@@repcams/@Union[Insert[Drop[q,#],Plus@@Take[q,#],First[#]]&/@Select[Tuples[Range[Length[q]],2],And[Less@@#,SameQ@@Take[q,#]]&]]]];
stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Select[Range[0,100],MemberQ[repcams[stc[#]],{_}]&]
A300384
In the ranked poset of integer partitions ordered by refinement, number of maximal chains from the local minimum to the partition with Heinz number n.
Original entry on oeis.org
0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 1, 11, 2, 2, 1, 33, 1, 116, 1, 5, 4, 435, 1, 2, 11, 1, 2, 1832, 2, 8167, 1, 12, 33, 10, 1, 39700, 116, 37, 1, 201785, 5, 1099449, 4, 3, 435, 6237505, 1, 19, 2, 123, 11, 37406458, 1, 27, 2, 474, 1832, 232176847, 2, 1513796040
Offset: 1
The a(21) = 5 maximal chains are the rows:
(111111)<(21111)<(2211)<(222)<(42)
(111111)<(21111)<(2211)<(411)<(42)
(111111)<(21111)<(2211)<(321)<(42)
(111111)<(21111)<(3111)<(411)<(42)
(111111)<(21111)<(3111)<(321)<(42)
Cf.
A000041,
A001055,
A001222,
A002846,
A056239,
A112798,
A213427,
A215366,
A265947,
A296150,
A299200,
A299202,
A299925,
A300273,
A300383,
A300385.
-
pcovs[ptn_]:=Select[Union[Reverse/@Sort/@Join@@@Tuples[IntegerPartitions/@ptn]],Length[#]===Length[ptn]+1&];
coc[ptn_]:=coc[ptn]=If[Max[ptn]===1,1,Total[coc/@pcovs[ptn]]];
primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Table[coc[Reverse[primeMS[n]]],{n,50}]
A357877
The a(n)-th composition in standard order is the sequence of run-sums of the prime indices of n.
Original entry on oeis.org
0, 1, 2, 2, 4, 6, 8, 4, 8, 12, 16, 10, 32, 24, 20, 8, 64, 24, 128, 20, 40, 48, 256, 18, 32, 96, 32, 40, 512, 52, 1024, 16, 80, 192, 72, 40, 2048, 384, 160, 36, 4096, 104, 8192, 80, 68, 768, 16384, 34, 128, 96, 320, 160, 32768, 96, 144, 72, 640, 1536, 65536, 84
Offset: 1
The prime indices of 24 are (1,1,1,2), with run-sums (3,2), and this is the 18th composition in standard order, so a(24) = 18.
The version for prime indices instead of standard compositions is
A353832.
The version for standard compositions instead of prime indices is
A353847.
A066099 lists standard compositions.
A351014 counts distinct runs in standard compositions.
Cf.
A118914,
A181819,
A238279,
A239312,
A275870,
A300273,
A304405,
A304442,
A304660,
A333755,
A353743-
A354912,
A357875.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
Table[stcinv[Total/@Split[primeMS[n]]],{n,100}]
A383088
Numbers whose multiset of prime indices does not have all equal run-sums.
Original entry on oeis.org
6, 10, 14, 15, 18, 20, 21, 22, 24, 26, 28, 30, 33, 34, 35, 36, 38, 39, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105
Offset: 1
The prime indices of 36 are {1,1,2,2}, with run-sums (2,4), so 36 is in the sequence, even though we have the multiset partition {{1,1},{2},{2}} with equal sums.
The terms together with their prime indices begin:
6: {1,2}
10: {1,3}
14: {1,4}
15: {2,3}
18: {1,2,2}
20: {1,1,3}
21: {2,4}
22: {1,5}
24: {1,1,1,2}
26: {1,6}
28: {1,1,4}
30: {1,2,3}
33: {2,5}
34: {1,7}
35: {3,4}
36: {1,1,2,2}
38: {1,8}
39: {2,6}
42: {1,2,4}
44: {1,1,5}
45: {2,2,3}
46: {1,9}
For distinct instead of equal run-sums we have
A353839.
Partitions of this type are counted by
A382076.
Counting and ranking partitions by run-lengths and run-sums:
A382877 counts permutations of prime indices with equal run-sums, zeros
A383100.
A383098 counts partitions with a permutation having all equal run-sums, ranks
A383110.
Cf.
A000720,
A006171,
A300273,
A353861,
A353932,
A354584,
A383014,
A383015,
A383095,
A383097,
A383099.
Comments