A381807
Number of multisets that can be obtained by choosing a constant partition of each m = 0..n and taking the multiset union.
Original entry on oeis.org
1, 1, 2, 4, 12, 24, 92, 184, 704, 2016, 7600, 15200, 80664, 161328, 601696, 2198824, 9868544, 19737088, 102010480, 204020960
Offset: 0
The a(1) = 1 through a(4) = 12 multisets:
{1} {1,2} {1,2,3} {1,2,3,4}
{1,1,1} {1,1,1,3} {1,1,1,3,4}
{1,1,1,1,2} {1,2,2,2,3}
{1,1,1,1,1,1} {1,1,1,1,2,4}
{1,1,1,2,2,3}
{1,1,1,1,1,1,4}
{1,1,1,1,1,2,3}
{1,1,1,1,2,2,2}
{1,1,1,1,1,1,1,3}
{1,1,1,1,1,1,2,2}
{1,1,1,1,1,1,1,1,2}
{1,1,1,1,1,1,1,1,1,1}
The number of possible choices was
A066843.
A000688 counts multiset partitions into constant blocks.
A050361 and
A381715 count multiset partitions into constant multisets.
A066723 counts partitions coarser than {1..n}, primorial case of
A317141.
A265947 counts refinement-ordered pairs of integer partitions.
A321470 counts partitions finer than {1..n}, primorial case of
A300383.
Cf.
A001970,
A018818,
A213385,
A299200,
A321467,
A321468,
A321471,
A321514,
A355731,
A381453,
A381455.
-
Table[Length[Union[Sort/@Join@@@Tuples[Select[IntegerPartitions[#],SameQ@@#&]&/@Range[n]]]],{n,0,10}]
A381808
Number of multisets that can be obtained by choosing a strict integer partition of m for each m = 0..n and taking the multiset union.
Original entry on oeis.org
1, 1, 1, 2, 4, 12, 38, 145, 586, 2619, 12096, 58370, 285244, 1436815, 7281062, 37489525, 193417612
Offset: 0
The a(1) = 1 through a(5) = 12 multisets:
{1} {1,2} {1,2,3} {1,2,3,4} {1,2,3,4,5}
{1,1,2,2} {1,1,2,2,4} {1,1,2,2,4,5}
{1,1,2,3,3} {1,1,2,3,3,5}
{1,1,1,2,2,3} {1,1,2,3,4,4}
{1,2,2,3,3,4}
{1,1,1,2,2,3,5}
{1,1,1,2,2,4,4}
{1,1,1,2,3,3,4}
{1,1,2,2,2,3,4}
{1,1,2,2,3,3,3}
{1,1,1,1,2,2,3,4}
{1,1,1,2,2,2,3,3}
A066723 counts partitions coarser than {1..n}, primorial case of
A317141.
A265947 counts refinement-ordered pairs of integer partitions.
A321470 counts partitions finer than {1..n}, primorial case of
A300383.
Cf.
A001970,
A018818,
A213385,
A299200,
A321467,
A321468,
A321471,
A321514,
A355731,
A381453,
A381455.
-
Table[Length[Union[Sort/@Join@@@Tuples[Select[IntegerPartitions[#],UnsameQ@@#&]&/@Range[n]]]],{n,0,10}]
A383309
Numbers whose prime indices are prime powers > 1 with a common sum of prime indices.
Original entry on oeis.org
1, 3, 5, 7, 9, 11, 17, 19, 23, 25, 27, 31, 35, 41, 49, 53, 59, 67, 81, 83, 97, 103, 109, 121, 125, 127, 131, 157, 175, 179, 191, 209, 211, 227, 241, 243, 245, 277, 283, 289, 311, 331, 343, 353, 361, 367, 391, 401, 419, 431, 461, 509, 529, 547, 563, 587, 599
Offset: 1
The systems with these MM-numbers begin:
1: {}
3: {{1}}
5: {{2}}
7: {{1,1}}
9: {{1},{1}}
11: {{3}}
17: {{4}}
19: {{1,1,1}}
23: {{2,2}}
25: {{2},{2}}
27: {{1},{1},{1}}
31: {{5}}
35: {{2},{1,1}}
41: {{6}}
49: {{1,1},{1,1}}
53: {{1,1,1,1}}
59: {{7}}
67: {{8}}
81: {{1},{1},{1},{1}}
83: {{9}}
97: {{3,3}}
Twice-partitions of this type are counted by
A279789.
For just a common sum we have
A326534.
For just constant blocks we have
A355743.
Numbers without a factorization of this type are listed by
A381871, counted by
A381993.
The multiplicative version is
A381995.
For strict instead of constant blocks we have
A382304.
A023894 counts partitions into prime-powers.
A034699 gives maximal prime-power divisor.
A050361 counts factorizations into distinct prime powers.
A355742 chooses a prime-power divisor of each prime index.
Cf.
A000688,
A000720,
A001222,
A006171,
A038041,
A279784,
A302242,
A302493,
A321455,
A326518,
A381719.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],SameQ@@Total/@prix/@prix[#]&&And@@PrimePowerQ/@prix[#]&]
A300384
In the ranked poset of integer partitions ordered by refinement, number of maximal chains from the local minimum to the partition with Heinz number n.
Original entry on oeis.org
0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 1, 11, 2, 2, 1, 33, 1, 116, 1, 5, 4, 435, 1, 2, 11, 1, 2, 1832, 2, 8167, 1, 12, 33, 10, 1, 39700, 116, 37, 1, 201785, 5, 1099449, 4, 3, 435, 6237505, 1, 19, 2, 123, 11, 37406458, 1, 27, 2, 474, 1832, 232176847, 2, 1513796040
Offset: 1
The a(21) = 5 maximal chains are the rows:
(111111)<(21111)<(2211)<(222)<(42)
(111111)<(21111)<(2211)<(411)<(42)
(111111)<(21111)<(2211)<(321)<(42)
(111111)<(21111)<(3111)<(411)<(42)
(111111)<(21111)<(3111)<(321)<(42)
Cf.
A000041,
A001055,
A001222,
A002846,
A056239,
A112798,
A213427,
A215366,
A265947,
A296150,
A299200,
A299202,
A299925,
A300273,
A300383,
A300385.
-
pcovs[ptn_]:=Select[Union[Reverse/@Sort/@Join@@@Tuples[IntegerPartitions/@ptn]],Length[#]===Length[ptn]+1&];
coc[ptn_]:=coc[ptn]=If[Max[ptn]===1,1,Total[coc/@pcovs[ptn]]];
primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Table[coc[Reverse[primeMS[n]]],{n,50}]
A301762
Number of ways to choose a constant rooted partition of each part in a rooted partition of n.
Original entry on oeis.org
1, 1, 2, 4, 7, 12, 21, 34, 55, 90, 143, 220, 347, 528, 805, 1226, 1831, 2719, 4048, 5940, 8710, 12714, 18403, 26529, 38220, 54679, 77899, 110810, 156848, 221181, 311635, 436705, 610597, 852125, 1184928, 1644136, 2276551, 3142523, 4328960, 5953523, 8167209
Offset: 1
The a(5) = 7 rooted twice-partitions where the latter rooted partitions are constant: (3), (111), (2)(), (11)(), (1)(1), (1)()(), ()()()().
Cf.
A002865,
A063834,
A093637,
A279784,
A295935,
A300383,
A301422,
A301462,
A301467,
A301480,
A301706.
-
Table[Sum[Product[If[k===1,1,DivisorSigma[0,k-1]],{k,ptn}],{ptn,IntegerPartitions[n-1]}],{n,20}]
A330785
Triangle read by rows where T(n,k) is the number of chains of length k from minimum to maximum in the poset of integer partitions of n ordered by refinement.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 3, 2, 0, 1, 5, 8, 4, 0, 1, 9, 25, 28, 11, 0, 1, 13, 57, 111, 99, 33, 0, 1, 20, 129, 379, 561, 408, 116, 0, 1, 28, 253, 1057, 2332, 2805, 1739, 435, 0, 1, 40, 496, 2833, 8695, 15271, 15373, 8253, 1832, 0, 1, 54, 898, 6824, 28071, 67790, 98946, 85870, 40789, 8167
Offset: 1
Triangle begins:
1
0 1
0 1 1
0 1 3 2
0 1 5 8 4
0 1 9 25 28 11
0 1 13 57 111 99 33
0 1 20 129 379 561 408 116
Row n = 5 counts the following chains (minimum and maximum not shown):
() (14) (113)->(14) (1112)->(113)->(14)
(23) (113)->(23) (1112)->(113)->(23)
(113) (122)->(14) (1112)->(122)->(14)
(122) (122)->(23) (1112)->(122)->(23)
(1112) (1112)->(14)
(1112)->(23)
(1112)->(113)
(1112)->(122)
The version for set partitions is
A008826.
The version for factorizations is
A330935.
Cf.
A000111,
A000258,
A000311,
A005121,
A141268,
A196545,
A265947,
A300383,
A306186,
A317141,
A317176,
A318813,
A320160,
A330679.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
upr[q_]:=Union[Sort/@Apply[Plus,mps[q],{2}]];
paths[eds_,start_,end_]:=If[start==end,Prepend[#,{}],#]&[Join@@Table[Prepend[#,e]&/@paths[eds,Last[e],end],{e,Select[eds,First[#]==start&]}]];
Table[Length[Select[paths[Join@@Table[{y,#}&/@DeleteCases[upr[y],y],{y,Sort/@IntegerPartitions[n]}],ConstantArray[1,n],{n}],Length[#]==k-1&]],{n,8},{k,n}]
A381872
Number of multisets that can be obtained by taking the sum of each block of a multiset partition of the prime indices of n into blocks having a common sum.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1
Offset: 1
The prime indices of 144 are {1,1,1,1,2,2}, with the following 4 multiset partitions having common block sum:
{{1,1,1,1,2,2}}
{{2,2},{1,1,1,1}}
{{1,1,2},{1,1,2}}
{{2},{2},{1,1},{1,1}}
with sums: 8, 4, 4, 2, of which 3 are distinct, so a(144) = 3.
The prime indices of 1296 are {1,1,1,1,2,2,2,2}, with the following 7 multiset partitions having common block sum:
{{1,1,1,1,2,2,2,2}}
{{2,2,2},{1,1,1,1,2}}
{{1,1,2,2},{1,1,2,2}}
{{2,2},{2,2},{1,1,1,1}}
{{2,2},{1,1,2},{1,1,2}}
{{1,2},{1,2},{1,2},{1,2}}
{{2},{2},{2},{2},{1,1},{1,1}}
with sums: 12, 6, 6, 4, 4, 3, 2, of which 5 are distinct, so a(1296) = 5.
With equal blocks instead of sums we have
A089723.
Positions of terms > 1 are
A321454.
With distinct instead of equal sums we have
A381637, before sums
A321469.
A265947 counts refinement-ordered pairs of integer partitions.
Other multiset partitions of prime indices:
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
Table[Length[Union[Sort[Total/@#]&/@Select[mps[prix[n]],SameQ@@Total/@#&]]],{n,100}]
A322077
In the ranked poset of integer partitions ordered by refinement, number of integer partitions coarser (greater) than or equal to the integer partition whose multiplicities are the prime indices of n in weakly decreasing order.
Original entry on oeis.org
1, 1, 2, 2, 3, 4, 5, 5, 8, 6, 7, 9, 11, 10, 12, 13, 15, 18, 22, 15, 19, 14, 30, 24, 22, 21, 40, 23, 42, 29, 56, 36, 27, 29, 34, 47, 77, 41, 39, 40
Offset: 1
The list of a(1) = 1 through a(18) = 18 coarser partitions:
() (1) (2) (3) (3) (4) (4) (6) (6) (5) (5)
(11) (21) (21) (22) (22) (33) (33) (32) (32)
(111) (31) (31) (42) (42) (41) (41)
(211) (211) (51) (51) (221) (221)
(1111) (321) (222) (311) (311)
(321) (2111) (2111)
(411) (11111)
(2211)
.
(7) (6) (6) (7) (10) (7) (9)
(43) (33) (33) (43) (55) (43) (54)
(52) (42) (42) (52) (64) (52) (63)
(61) (51) (51) (61) (73) (61) (72)
(322) (222) (222) (322) (82) (322) (81)
(331) (321) (321) (331) (91) (331) (333)
(421) (411) (411) (421) (433) (421) (432)
(511) (2211) (2211) (511) (442) (511) (441)
(3211) (3111) (3111) (2221) (532) (2221) (522)
(21111) (21111) (3211) (541) (3211) (531)
(111111) (4111) (631) (4111) (621)
(22111) (721) (22111) (711)
(4321) (31111) (3222)
(211111) (3321)
(1111111) (4221)
(4311)
(5211)
(32211)
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
Table[Length[Union[Sort/@Apply[Plus,mps[nrmptn[n]],{2}]]],{n,20}]
Comments