cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A302861 a(n) = [x^(n^2)] theta_3(x)^n/(1 - x), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 3, 13, 123, 1281, 16875, 252673, 4031123, 70554353, 1318315075, 26107328109, 549772933959, 12147113355505, 280978137279483, 6780378828922333, 169829490474843659, 4409771551548703649, 118361723203178140163, 3277041835527134201777, 93455465161026267454527
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 14 2018

Keywords

Comments

a(n) = number of integer lattice points inside the n-dimensional hypersphere of radius n.

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[EllipticTheta[3, 0, x]^n/(1 - x), {x, 0, n^2}], {n, 0, 19}]
    Table[SeriesCoefficient[1/(1 - x) Sum[x^k^2, {k, -n, n}]^n, {x, 0, n^2}], {n, 0, 19}]

Formula

a(n) = A122510(n,n^2).

A055426 Number of points in Z^n of norm <= 2.

Original entry on oeis.org

1, 5, 13, 33, 89, 221, 485, 953, 1713, 2869, 4541, 6865, 9993, 14093, 19349, 25961, 34145, 44133, 56173, 70529, 87481, 107325, 130373, 156953, 187409, 222101, 261405, 305713, 355433, 410989, 472821, 541385, 617153, 700613, 792269, 892641
Offset: 0

Views

Author

Keywords

Crossrefs

Row n=2 of A302997. Column 4 of A122510.

Programs

  • Mathematica
    LinearRecurrence[{5,-10,10,-5,1},{1,5,13,33,89},40] (* Harvey P. Dale, Feb 09 2015 *)

Formula

a(n) = (3+2*n+16*n^2-8*n^3+2*n^4)/3. - corrected by Colin Barker, Jul 07 2013
G.f.: -(x+1)*(9*x^3-x^2-x+1) / (x-1)^5. - Colin Barker, Jul 07 2013
a(0)=1, a(1)=5, a(2)=13, a(3)=33, a(4)=89, a(n)=5*a(n-1)-10*a(n-2)+ 10*a(n-3)- 5*a(n-4)+a(n-5). - Harvey P. Dale, Feb 09 2015

A055427 Number of points in Z^n of norm <= 3.

Original entry on oeis.org

1, 7, 29, 123, 425, 1343, 4197, 12435, 33809, 84663, 198765, 444907, 959801, 2005615, 4064821, 7988867, 15221537, 28122727, 50423741, 87851099, 148962249, 246243487, 397527813, 627798387, 971451697, 1475103511, 2201030157
Offset: 0

Views

Author

Keywords

Crossrefs

Row n=3 of A302997. Column 9 of A122510.

Programs

  • Mathematica
    a[n_] := SeriesCoefficient[1/(1-x) Sum[x^(i^2), {i, -3, 3}]^n, {x, 0, 9}];
    a /@ Range[0, 26] (* Jean-François Alcover, Sep 29 2019, from A302997 *)

Formula

Appears to satisfy a 9-degree polynomial. - Ralf Stephan, Mar 07 2004
Empirical g.f.: (x+1)*(93*x^8+620*x^7-848*x^6+516*x^5-150*x^4+20*x^3+8*x^2-4*x+1) / (x-1)^10. - Colin Barker, Jul 07 2013
Above conjectures confirmed by later additions of b-file from Andrew Howroyd and program from Jean-François Alcover with connection to A302997. - Ray Chandler, Jun 27 2024
a(n) = 1 +1126/315*n +84668/2835*n^3 -418/45*n^2 +2152/135*n^5 -64/15*n^6 +584/945*n^7 -2/45*n^8 -152/5*n^4 +4/2835*n^9. - R. J. Mathar, Aug 03 2025

A055428 Number of points in Z^n of norm <= 4.

Original entry on oeis.org

1, 9, 49, 257, 1281, 5913, 23793, 88273, 306049, 995241, 3083569, 9217057, 26631041, 74164665, 198807793, 513829617, 1284656385, 3117323593, 7360510001, 16939394369, 38039783425, 83427144281, 178841051889
Offset: 0

Views

Author

Keywords

Crossrefs

Row n=4 of A302997.

Programs

  • Mathematica
    a[n_] := SeriesCoefficient[1/(1-x) Sum[x^(i^2), {i, -4, 4}]^n, {x, 0, 16}];
    a /@ Range[0, 22] (* Jean-François Alcover, Sep 29 2019, from A302997 *)

Formula

Empirical g.f.: -(1201*x^16 +46896*x^15 +180864*x^14 -238504*x^13 -86788*x^12 +380032*x^11 -353440*x^10 +186568*x^9 -65418*x^8 +17264*x^7 -3968*x^6 +1000*x^5 -164*x^4 -32*x^3 +32*x^2 -8*x +1) / (x -1)^17. - Colin Barker, Jul 07 2013
Above conjecture confirmed by later additions of b-file from Andrew Howroyd and program from Jean-François Alcover with connection to A302997. - Ray Chandler, Jun 27 2024

A055429 Number of points in Z^n of norm <= 5.

Original entry on oeis.org

1, 11, 81, 515, 3121, 16875, 84769, 394691, 1733537, 7129227, 27634481, 102386243, 365127249, 1256538091, 4180101249, 13457728387, 41966634049, 126929576971, 373074639633, 1067860637059, 2981845163377, 8133266915563
Offset: 0

Views

Author

Keywords

Crossrefs

Row n=5 of A302997.

Programs

  • Mathematica
    a[n_] := SeriesCoefficient[1/(1-x) Sum[x^(i^2), {i, -5, 5}]^n, {x, 0, 25}];
    a /@ Range[0, 21] (* Jean-François Alcover, Sep 29 2019, from A302997 *)

Formula

From Chai Wah Wu, Jun 24 2024: (Start)
a(n) = 26*a(n-1) - 325*a(n-2) + 2600*a(n-3) - 14950*a(n-4) + 65780*a(n-5) - 230230*a(n-6) + 657800*a(n-7) - 1562275*a(n-8) + 3124550*a(n-9) - 5311735*a(n-10) + 7726160*a(n-11) - 9657700*a(n-12) + 10400600*a(n-13) - 9657700*a(n-14) + 7726160*a(n-15) - 5311735*a(n-16) + 3124550*a(n-17) - 1562275*a(n-18) + 657800*a(n-19) - 230230*a(n-20) + 65780*a(n-21) - 14950*a(n-22) + 2600*a(n-23) - 325*a(n-24) + 26*a(n-25) - a(n-26) for n > 25.
G.f.: (17661*x^25 + 2780045*x^24 + 57398752*x^23 + 196406336*x^22 - 384767594*x^21 - 344776842*x^20 + 1472178776*x^19 - 1618643528*x^18 + 654551287*x^17 + 375150567*x^16 - 758544352*x^15 + 613843168*x^14 - 335122748*x^13 + 139534596*x^12 - 47458608*x^11 + 14003344*x^10 - 3738565*x^9 + 903851*x^8 - 193728*x^7 + 38944*x^6 - 8826*x^5 + 2406*x^4 - 616*x^3 + 120*x^2 - 15*x + 1)/(x - 1)^26. (End)

A055430 Number of points in Z^n of norm <= 6.

Original entry on oeis.org

1, 13, 113, 925, 6577, 42205, 252673, 1405325, 7259297, 35372141, 164379601, 733618493, 3146718929, 12990499005, 51718535393, 198914813101, 740760081985, 2678069599181, 9420136888369, 32289213758941
Offset: 0

Views

Author

Keywords

Crossrefs

Row n=6 of A302997.

Programs

  • Mathematica
    a[n_] := SeriesCoefficient[1/(1-x) Sum[x^(i^2), {i, -6, 6}]^n, {x, 0, 36}];
    a /@ Range[0, 19] (* Jean-François Alcover, Sep 29 2019, from A302997 *)

Formula

From Chai Wah Wu, Jun 24 2024: (Start)
a(n) = 37*a(n-1) - 666*a(n-2) + 7770*a(n-3) - 66045*a(n-4) + 435897*a(n-5) - 2324784*a(n-6) + 10295472*a(n-7) - 38608020*a(n-8) + 124403620*a(n-9) - 348330136*a(n-10) + 854992152*a(n-11) - 1852482996*a(n-12) + 3562467300*a(n-13) - 6107086800*a(n-14) + 9364199760*a(n-15) - 12875774670*a(n-16) + 15905368710*a(n-17) - 17672631900*a(n-18) + 17672631900*a(n-19) - 15905368710*a(n-20) + 12875774670*a(n-21) - 9364199760*a(n-22) + 6107086800*a(n-23) - 3562467300*a(n-24) + 1852482996*a(n-25) - 854992152*a(n-26) + 348330136*a(n-27) - 124403620*a(n-28) + 38608020*a(n-29) - 10295472*a(n-30) + 2324784*a(n-31) - 435897*a(n-32) + 66045*a(n-33) - 7770*a(n-34) + 666*a(n-35) - 37*a(n-36) + a(n-37) for n > 36.
G.f.: (-281965*x^36 - 162444640*x^35 - 11761370826*x^34 - 212144886152*x^33 - 928459493209*x^32 + 1366727925344*x^31 + 5450543439600*x^30 - 13901610703968*x^29 + 5010411747228*x^28 + 24002105533408*x^27 - 48129204006968*x^26 + 44288625555072*x^25 - 17538634969732*x^24 - 9564481773600*x^23 + 21935655852496*x^22 - 20357294743904*x^21 + 13092000949610*x^20 - 6522919407712*x^19 + 2638636104868*x^18 - 890508942928*x^17 + 255606629458*x^16 - 63337866464*x^15 + 13802270992*x^14 - 2818810912*x^13 + 658326476*x^12 - 212266848*x^11 + 77735560*x^10 - 24527552*x^9 + 5749644*x^8 - 823648*x^7 - 5328*x^6 + 40416*x^5 - 12645*x^4 + 2368*x^3 - 298*x^2 + 24*x - 1)/(x - 1)^37. (End)

A055431 Number of points in Z^n of norm <= 7.

Original entry on oeis.org

1, 15, 149, 1419, 11833, 89527, 622573, 4031123, 24499121, 140246303, 759891589, 3936654683, 19595418729, 94005744199, 435555727453, 1952358697443, 8479351841889, 35738244759855, 146442095372661, 584453833956395
Offset: 0

Views

Author

Keywords

Crossrefs

Row n=7 of A302997.

Programs

  • Mathematica
    a[n_] := SeriesCoefficient[1/(1-x) Sum[x^(i^2), {i, -7, 7}]^n, {x, 0, 49}];
    a /@ Range[0, 19] (* Jean-François Alcover, Sep 29 2019, from A302997 *)

Formula

From Chai Wah Wu, Jun 24 2024: (Start)
a(n) = 50*a(n-1) - 1225*a(n-2) + 19600*a(n-3) - 230300*a(n-4) + 2118760*a(n-5) - 15890700*a(n-6) + 99884400*a(n-7) - 536878650*a(n-8) + 2505433700*a(n-9) - 10272278170*a(n-10) + 37353738800*a(n-11) - 121399651100*a(n-12) + 354860518600*a(n-13) - 937845656300*a(n-14) + 2250829575120*a(n-15) - 4923689695575*a(n-16) + 9847379391150*a(n-17) - 18053528883775*a(n-18) + 30405943383200*a(n-19) - 47129212243960*a(n-20) + 67327446062800*a(n-21) - 88749815264600*a(n-22) + 108043253365600*a(n-23) - 121548660036300*a(n-24) + 126410606437752*a(n-25) - 121548660036300*a(n-26) + 108043253365600*a(n-27) - 88749815264600*a(n-28) + 67327446062800*a(n-29) - 47129212243960*a(n-30) + 30405943383200*a(n-31) - 18053528883775*a(n-32) + 9847379391150*a(n-33) - 4923689695575*a(n-34) + 2250829575120*a(n-35) - 937845656300*a(n-36) + 354860518600*a(n-37) - 121399651100*a(n-38) + 37353738800*a(n-39) - 10272278170*a(n-40) + 2505433700*a(n-41) - 536878650*a(n-42) + 99884400*a(n-43) - 15890700*a(n-44) + 2118760*a(n-45) - 230300*a(n-46) + 19600*a(n-47) - 1225*a(n-48) + 50*a(n-49) - a(n-50) for n > 49.
G.f.: (4767165*x^49 + 9677003929*x^48 + 2099328748968*x^47 + 119350380239392*x^46 + 2336719571000548*x^45 + 15324790943793868*x^44 + 3669334003469912*x^43 - 165626545771418640*x^42 + 113225352874515162*x^41 + 773012391447229738*x^40 - 1795431077729032904*x^39 + 730347243679248128*x^38 + 3231774434773792276*x^37 - 7249751867677049972*x^36 + 7289414576709914312*x^35 - 2539411927923481168*x^34 - 3778300058198325229*x^33 + 7735724342915171551*x^32 - 7916127405687211504*x^31 + 5585783179325618368*x^30 - 2805508704881709112*x^29 + 850333720624628056*x^28 + 70648743414492144*x^27 - 307395947231217952*x^26 + 255873188698001516*x^25 - 149186455600233620*x^24 + 70664753999062000*x^23 - 28617884750559104*x^22 + 10133301697903944*x^21 - 3168161807821640*x^20 + 878763873242640*x^19 - 217944520543264*x^18 + 49563849545395*x^17 - 11011796480281*x^16 + 2633696463048*x^15 - 709532404192*x^14 + 200891132244*x^13 - 53924504996*x^12 + 12812092728*x^11 - 2574294736*x^10 + 411639898*x^9 - 44187894*x^8 + 222808*x^7 + 1253248*x^6 - 348508*x^5 + 59708*x^4 - 7256*x^3 + 624*x^2 - 35*x + 1)/(x - 1)^50. (End)

A055432 Number of points in Z^n of norm <= 8.

Original entry on oeis.org

1, 17, 197, 2109, 20185, 176377, 1395261, 10248133, 70554353, 458690081, 2839094517, 16837397901, 95964034121, 526432799625, 2784251496685, 14233010034069, 70491253578465, 338968561343793, 1585620669607461
Offset: 0

Views

Author

Keywords

Crossrefs

Row n=8 of A302997.

Programs

  • Mathematica
    a[n_] := SeriesCoefficient[1/(1-x) Sum[x^(i^2), {i, -8, 8}]^n, {x, 0, 64}];
    a /@ Range[0, 19] (* Jean-François Alcover, Sep 29 2019, from A302997 *)

Formula

From Chai Wah Wu, Jun 24 2024: (Start)
a(n) = 65*a(n-1) - 2080*a(n-2) + 43680*a(n-3) - 677040*a(n-4) + 8259888*a(n-5) - 82598880*a(n-6) + 696190560*a(n-7) - 5047381560*a(n-8) + 31966749880*a(n-9) - 179013799328*a(n-10) + 895068996640*a(n-11) - 4027810484880*a(n-12) + 16421073515280*a(n-13) - 60992558771040*a(n-14) + 207374699821536*a(n-15) - 648045936942300*a(n-16) + 1867897112363100*a(n-17) - 4981058966301600*a(n-18) + 12321566916640800*a(n-19) - 28339603908273840*a(n-20) + 60727722660586800*a(n-21) - 121455445321173600*a(n-22) + 227068876035237600*a(n-23) - 397370533061665800*a(n-24) + 651687674221131912*a(n-25) - 1002596421878664480*a(n-26) + 1448194831602515360*a(n-27) - 1965407271460556560*a(n-28) + 2507588587725537680*a(n-29) - 3009106305270645216*a(n-30) + 3397378086595889760*a(n-31) - 3609714217008132870*a(n-32) + 3609714217008132870*a(n-33) - 3397378086595889760*a(n-34) + 3009106305270645216*a(n-35) - 2507588587725537680*a(n-36) + 1965407271460556560*a(n-37) - 1448194831602515360*a(n-38) + 1002596421878664480*a(n-39) - 651687674221131912*a(n-40) + 397370533061665800*a(n-41) - 227068876035237600*a(n-42) + 121455445321173600*a(n-43) - 60727722660586800*a(n-44) + 28339603908273840*a(n-45) - 12321566916640800*a(n-46) + 4981058966301600*a(n-47) - 1867897112363100*a(n-48) + 648045936942300*a(n-49) - 207374699821536*a(n-50) + 60992558771040*a(n-51) - 16421073515280*a(n-52) + 4027810484880*a(n-53) - 895068996640*a(n-54) + 179013799328*a(n-55) - 31966749880*a(n-56) + 5047381560*a(n-57) - 696190560*a(n-58) + 82598880*a(n-59) - 8259888*a(n-60) + 677040*a(n-61) - 43680*a(n-62) + 2080*a(n-63) - 65*a(n-64) + a(n-65) for n > 64.
G.f.: (-84067061*x^64 - 594125181016*x^63 - 358570175617596*x^62 - 54327645405793088*x^61 - 3007970153301973684*x^60 - 70751321058233331176*x^59 - 708431535121140613196*x^58 - 2104975430248540461904*x^57 + 7171233759979214996564*x^56 + 26759036706964389777864*x^55 - 84577727700353397526076*x^54 - 73337885044523755892064*x^53 + 585766983871140782043948*x^52 - 749552695685318041092424*x^51 - 663783692725740379098444*x^50 + 3481577378759511387361808*x^49 - 5029057516240412205421408*x^48 + 2295741278263309504970632*x^47 + 4465915792456106045467604*x^46 - 11106570988074196912272256*x^45 + 13029987601836099080685500*x^44 - 9070951669662352149834568*x^43 + 2002580090771753282869636*x^42 + 4165095558738342937158448*x^41 - 7062324054366106555437196*x^40 + 6773432434485734087377832*x^39 - 4796019421500025574195564*x^38 + 2635532999045053804031968*x^37 - 1085317387474474986646692*x^36 + 259933601983184071258712*x^35 + 56307130989018479346756*x^34 - 116766236029728805998320*x^33 + 89058999733157906895070*x^32 - 50464950061171488516488*x^31 + 23885136813307640501836*x^30 - 9854425855777159898944*x^29 + 3617070497318070669412*x^28 - 1195315679370871226424*x^27 + 359133844367687460892*x^26 - 99368370792899666288*x^25 + 25879804048463556508*x^24 - 6579045200791562280*x^23 + 1710956693102496716*x^22 - 471046038930846112*x^21 + 136593427213299332*x^20 - 40151798043444568*x^19 + 11465968341859484*x^18 - 3084886129169232*x^17 + 767059307842552*x^16 - 173956391417768*x^15 + 35556089847068*x^14 - 6452545668608*x^13 + 1013173798292*x^12 - 129833639064*x^11 + 11162193836*x^10 + 177547664*x^9 - 332491236*x^8 + 86590648*x^7 - 15352100*x^6 + 2104096*x^5 - 227340*x^4 + 19016*x^3 - 1172*x^2 + 48*x - 1)/(x - 1)^65. (End)

A055433 Number of points in Z^n of norm <= 9.

Original entry on oeis.org

1, 19, 253, 3071, 32633, 313259, 2787125, 23120727, 179773681, 1318315075, 9183188589, 61157195951, 390820296297, 2405500230619, 14298590156965, 82219631208967, 458093162029537, 2477433774277747, 13028767115904989
Offset: 0

Views

Author

Keywords

Crossrefs

Row n=9 of A302997.

Programs

  • Mathematica
    a[n_] := SeriesCoefficient[1/(1-x) Sum[x^(i^2), {i, -9, 9}]^n, {x, 0, 81}];
    a /@ Range[0, 18] (* Jean-François Alcover, Sep 29 2019, from A302997 *)

Formula

From Chai Wah Wu, Jun 24 2024: (Start)
a(n) = 82*a(n-1) - 3321*a(n-2) + 88560*a(n-3) - 1749060*a(n-4) + 27285336*a(n-5) - 350161812*a(n-6) + 3801756816*a(n-7) - 35641470150*a(n-8) + 293052087900*a(n-9) - 2139280241670*a(n-10) + 14002561581840*a(n-11) - 82848489359220*a(n-12) + 446107250395800*a(n-13) - 2198671448379300*a(n-14) + 9967310565986160*a(n-15) - 41738112995067045*a(n-16) + 162042085745554410*a(n-17) - 585151976303390925*a(n-18) + 1971038235969316800*a(n-19) - 6208770443303347920*a(n-20) + 18330655594514646240*a(n-21) - 50825908693881519120*a(n-22) + 132589327027517006400*a(n-23) - 325948762275979307400*a(n-24) + 756201128480271993168*a(n-25) - 1657825550899057831176*a(n-26) + 3438452994457305131328*a(n-27) - 6754104096255420793680*a(n-28) + 12576607627510093891680*a(n-29) - 22218673475267832541968*a(n-30) + 37270032926255719102656*a(n-31) - 59399114976220052319858*a(n-32) + 89998659054878867151300*a(n-33) - 129703949814384249718050*a(n-34) + 177879702602584113899040*a(n-35) - 232231833953373704257080*a(n-36) + 288720658428518659346640*a(n-37) - 341906042875877359752600*a(n-38) + 385740150936887277669600*a(n-39) - 414670662257153823494820*a(n-40) + 424784580848791721628840*a(n-41) - 414670662257153823494820*a(n-42) + 385740150936887277669600*a(n-43) - 341906042875877359752600*a(n-44) + 288720658428518659346640*a(n-45) - 232231833953373704257080*a(n-46) + 177879702602584113899040*a(n-47) - 129703949814384249718050*a(n-48) + 89998659054878867151300*a(n-49) - 59399114976220052319858*a(n-50) + 37270032926255719102656*a(n-51) - 22218673475267832541968*a(n-52) + 12576607627510093891680*a(n-53) - 6754104096255420793680*a(n-54) + 3438452994457305131328*a(n-55) - 1657825550899057831176*a(n-56) + 756201128480271993168*a(n-57) - 325948762275979307400*a(n-58) + 132589327027517006400*a(n-59) - 50825908693881519120*a(n-60) + 18330655594514646240*a(n-61) - 6208770443303347920*a(n-62) + 1971038235969316800*a(n-63) - 585151976303390925*a(n-64) + 162042085745554410*a(n-65) - 41738112995067045*a(n-66) + 9967310565986160*a(n-67) - 2198671448379300*a(n-68) + 446107250395800*a(n-69) - 82848489359220*a(n-70) + 14002561581840*a(n-71) - 2139280241670*a(n-72) + 293052087900*a(n-73) - 35641470150*a(n-74) + 3801756816*a(n-75) - 350161812*a(n-76) + 27285336*a(n-77) - 1749060*a(n-78) + 88560*a(n-79) - 3321*a(n-80) + 82*a(n-81) - a(n-82) for n > 81.
G.f.: (1531046745*x^81 + 37629363909561*x^80 + 60910478841274160*x^79 + 22692135624769352656*x^78 + 3051112489111143719748*x^77 + 182743417550563269125860*x^76 + 5391526437441978477353312*x^75 + 80041119412764105726852224*x^74 + 539379738398173139841277318*x^73 + 647699260881629183333986918*x^72 - 7989223516876238336737126160*x^71 - 12774523001212039169523214384*x^70 + 90868458232184825854869444948*x^69 + 9961204642352094145352597556*x^68 - 650486793393993631469462571904*x^67 + 1072690784463518809629349466080*x^66 + 1124591260331408873527675548429*x^65 - 6587774366867101805917880003891*x^64 + 9267857687649372118847520699328*x^63 + 1019072080071938213250050873920*x^62 - 25710534135862165895484919152688*x^61 + 47725920832157335096974766078544*x^60 - 41094813876365875588246615837056*x^59 - 4394643113518995905564855128320*x^58 + 68363869390243095954705114560520*x^57 - 112322138020333087270795291430520*x^56 + 108909557638999866203793326322624*x^55 - 61140924715403484185640087609024*x^54 - 3215219671853421195850132951088*x^53 + 53297880651258703228130688288080*x^52 - 73359380166899341912142263806720*x^51 + 66258471510827434111312760792192*x^50 - 45166241884218194291371759235998*x^49 + 23127479865994788873548670929058*x^48 - 7358973306797937413485331420000*x^47 - 876412121599079114637226054816*x^46 + 3595705573939454744441406194488*x^45 - 3458872947132781074301865227272*x^44 + 2397198228199907936546571423808*x^43 - 1375328979512740079865051420160*x^42 + 685154480102195157707484548772*x^41 - 302911512091749441001248762140*x^40 + 120184595167399620030534400544*x^39 - 43066201460804678074693977504*x^38 + 14010981403336965980045662424*x^37 - 4177993483015491659621760744*x^36 + 1169647391924421023982667776*x^35 - 324729630999815660632236224*x^34 + 97570387312116493409058674*x^33 - 33687344643258478622663054*x^32 + 12869099817254805056047808*x^31 - 4977069781798663663370432*x^30 + 1826781292369630931036688*x^29 - 617426561247315140668784*x^28 + 189936218849842719217280*x^27 - 52923403282803010747136*x^26 + 13310306860847778095752*x^25 - 3008378759077764560376*x^24 + 607421180775591469248*x^23 - 108808863989330938816*x^22 + 17234564509009873040*x^21 - 2457233204409912304*x^20 + 345123783698851584*x^19 - 58446173814172544*x^18 + 13097273614375941*x^17 - 3210812788606875*x^16 + 713474660619696*x^15 - 130749518510256*x^14 + 17787275237284*x^13 - 1125478021052*x^12 - 257451935392*x^11 + 118227694976*x^10 - 28322270394*x^9 + 5080536358*x^8 - 735578000*x^7 + 87758928*x^6 - 8622732*x^5 + 687444*x^4 - 43136*x^3 + 2016*x^2 - 63*x + 1)/(x - 1)^82. (End)

A055434 Number of points in Z^n of norm <= 10.

Original entry on oeis.org

1, 21, 317, 4169, 49689, 532509, 5260181, 48218513, 415055025, 3375505573, 26107328109, 193280122713, 1374386800585, 9405092131245, 62077194367429, 396122100447649, 2449318034512737, 14705097001902901, 85877415063465373
Offset: 0

Views

Author

Keywords

Crossrefs

Row n=10 of A302997.

Programs

  • Mathematica
    a[n_] := SeriesCoefficient[1/(1-x) Sum[x^(i^2), {i, -10, 10}]^n, {x, 0, 100}];
    a /@ Range[0, 18] (* Jean-François Alcover, Sep 29 2019, from A302997 *)
Previous Showing 11-20 of 20 results.