A329366
Numbers whose distinct prime indices are pairwise indivisible (stable) and pairwise non-relatively prime (intersecting).
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 91, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
3: {2}
4: {1,1}
5: {3}
7: {4}
8: {1,1,1}
9: {2,2}
11: {5}
13: {6}
16: {1,1,1,1}
17: {7}
19: {8}
23: {9}
25: {3,3}
27: {2,2,2}
29: {10}
31: {11}
32: {1,1,1,1,1}
37: {12}
Heinz numbers of the partitions counted by
A328871.
Replacing "intersecting" with "relatively prime" gives
A328677.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Select[Range[100],stableQ[Union[primeMS[#]],GCD[#1,#2]==1&]&&stableQ[Union[primeMS[#]],Divisible]&]
A328871
Number of integer partitions of n whose distinct parts are pairwise indivisible (stable) and pairwise non-relatively prime (intersecting).
Original entry on oeis.org
1, 1, 2, 2, 3, 2, 4, 2, 4, 3, 5, 2, 6, 2, 7, 5, 7, 2, 10, 2, 11, 7, 14, 2, 16, 4, 19, 8, 22, 2, 30, 3, 29, 14, 37, 8, 48, 4, 50, 19, 59, 5, 82, 4, 81, 28, 93, 8, 128, 9, 128, 38, 147, 8, 199, 19, 196, 52, 223, 12, 308
Offset: 0
The a(1) = 1 through a(10) = 5 partitions (A = 10):
1 2 3 4 5 6 7 8 9 A
11 111 22 11111 33 1111111 44 333 55
1111 222 2222 111111111 64
111111 11111111 22222
1111111111
The Heinz numbers of these partitions are
A329366.
Replacing "intersecting" with "relatively prime" gives
A328676.
Intersecting partitions are
A328673.
-
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Table[Length[Select[IntegerPartitions[n],stableQ[Union[#],Divisible]&&stableQ[Union[#],GCD[#1,#2]==1&]&]],{n,0,30}]
A305080
Number of connected strict integer partitions of n with pairwise indivisible and squarefree parts.
Original entry on oeis.org
1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 3, 3, 2, 2, 3, 2, 2, 4, 2, 3, 4, 4, 3, 4, 3, 4, 5, 6, 4, 6, 5, 7, 6, 5, 6, 8, 6, 6, 6, 10, 11, 11, 9, 11, 9, 13
Offset: 1
The a(52) = 6 strict partitions together with their corresponding multiset multisystems (which are clutters):
(21,15,10,6): {{2,4},{2,3},{1,3},{1,2}}
(22,14,10,6): {{1,5},{1,4},{1,3},{1,2}}
(30,22): {{1,2,3},{1,5}}
(38,14): {{1,8},{1,4}}
(42,10): {{1,2,4},{1,3}}
(46,6): {{1,9},{1,2}}
The a(60) = 8 strict partitions together with their corresponding multiset multisystems (which are clutters):
(21,15,14,10): {{2,4},{2,3},{1,4},{1,3}}
(33,21,6): {{2,5},{2,4},{1,2}}
(35,15,10): {{3,4},{2,3},{1,3}}
(39,15,6): {{2,6},{2,3},{1,2}}
(34,26): {{1,7},{1,6}}
(38,22): {{1,8},{1,5}}
(39,21): {{2,6},{2,4}}
(46,14): {{1,9},{1,4}}
-
Table[Length[Select[IntegerPartitions[n],And[UnsameQ@@#,And@@SquareFreeQ/@#,Length[zsm[#]]==1,Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]=={}]&]],{n,50}]
A305761
Nonprime Heinz numbers of z-trees.
Original entry on oeis.org
91, 203, 247, 299, 301, 377, 427, 551, 553, 559, 611, 689, 703, 707, 791, 817, 851, 923, 949, 973, 1027, 1073, 1081, 1141, 1159, 1247, 1267, 1313, 1339, 1349, 1363, 1391, 1393, 1501, 1537, 1591, 1603, 1679, 1703, 1739, 1757, 1769, 1781, 1807, 1897, 1919, 1961
Offset: 1
2639 is the Heinz number of {4,6,10}, a z-tree corresponding to the multiset system {{1,1},{1,2},{1,3}}.
Cf.
A030019,
A056239,
A112798,
A286520,
A302242,
A303362,
A303837,
A304118,
A304714,
A304716,
A305052,
A305078,
A305079,
A305081.
-
primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s];
Select[Range[3000],With[{p=primeMS[#]},And[UnsameQ@@p,Length[p]>1,zensity[p]==-1,Length[zsm[p]]==1,Select[Tuples[p,2],UnsameQ@@#&&Divisible@@#&]=={}]]&]
A327520
Number of factorizations of the n-th stable number A316476(n) into stable numbers > 1.
Original entry on oeis.org
1, 1, 2, 1, 1, 3, 2, 1, 1, 2, 5, 1, 1, 1, 2, 3, 1, 1, 7, 2, 2, 1, 1, 1, 4, 1, 2, 2, 1, 2, 1, 1, 11, 1, 2, 1, 1, 4, 2, 1, 5, 1, 2, 1, 2, 2, 2, 1, 4, 1, 1, 1, 1, 1, 2, 2, 2, 3, 1, 15, 1, 7, 1, 1, 2, 2, 2, 1, 1, 4, 2, 1, 2, 1, 5, 1, 2, 1, 4, 2, 1, 1, 2, 1, 1, 1
Offset: 1
The a(26) = 4 factorizations of 45 into stable numbers:
(3*3*5)
(3*15)
(5*9)
(45)
The a(201) = 11 multiset partitions of the prime indices of 495 into stable multisets:
{{2},{2},{3},{5}}
{{2},{2},{3,5}}
{{2},{3},{2,5}}
{{2},{5},{2,3}}
{{2},{2,3,5}}
{{3},{2,2},{5}}
{{3},{2,2,5}}
{{2,2},{3,5}}
{{5},{2,2,3}}
{{2,3},{2,5}}
{{2,2,3,5}}
See link for additional cross-references.
-
nn=100;
facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
y=Select[Range[nn],stableQ[PrimePi/@First/@FactorInteger[#],Divisible]&];
Table[Length[facsusing[Rest[y],n]],{n,y}]
Comments