cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A304034 Number of ways to write n as p + 2^k + (1+(n mod 2))*3^m with p prime, where k and m are positive integers with 2^k + (1+(n mod 2))*3^m squarefree.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 2, 1, 3, 1, 4, 2, 5, 1, 3, 2, 5, 1, 7, 3, 3, 4, 4, 4, 6, 2, 3, 5, 6, 2, 7, 3, 5, 5, 6, 5, 9, 3, 4, 6, 7, 2, 12, 2, 5, 6, 7, 4, 10, 3, 3, 5, 8, 2, 8, 3, 4, 6, 8, 5, 9, 4, 2, 7, 7, 3, 13, 5, 5, 9, 7, 5, 13, 3, 6, 10, 7, 5, 10, 5, 7, 7, 9, 8, 13
Offset: 1

Views

Author

Zhi-Wei Sun, May 06 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n > 11.
This has been verified for n up to 10^10.
See also A304081 for a similar conjecture.

Examples

			a(8) = 1 since 8 = 3 + 2^1 + 3^1 with 3 prime and 2^1 + 3^1 = 5 squarefree.
a(13) = 1 since 13 = 3 + 2^2 + 2*3^1 with 3 prime and 2^2 + 2*3^1 = 2*5 squarefree.
a(19) = 1 since 19 = 5 + 2^3 + 2*3^1 with 5 prime and 2^3 + 2*3^1 = 2*7 squarefree.
a(23) = 1 since 23 = 13 + 2^2 + 2*3^1 with 13 prime and 2^2 + 2*3 = 2*5 squarefree.
		

Crossrefs

Programs

  • Mathematica
    tab={};Do[r=0;Do[If[SquareFreeQ[2^k+(1+Mod[n,2])*3^m]&&PrimeQ[n-2^k-(1+Mod[n,2])*3^m],r=r+1],{k,1,Log[2,n]},{m,1,If[2^k==n,-1,Log[3,(n-2^k)/(1+Mod[n,2])]]}];tab=Append[tab,r],{n,1,90}];Print[tab]

A303702 Number of ways to write 2*n as p + 2^k + 3^m, where p is a prime, and k and m are nonnegative integers.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 5, 7, 6, 6, 9, 9, 5, 8, 9, 6, 9, 11, 8, 10, 11, 7, 12, 15, 8, 10, 12, 7, 10, 9, 8, 12, 11, 5, 12, 16, 7, 13, 17, 8, 10, 15, 10, 13, 14, 10, 12, 17, 7, 12, 18, 11, 13, 17, 10, 13, 20, 11, 14, 17, 8, 10, 16, 7, 10
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 29 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n > 1. In other words, any even number greater than 2 can be written as the sum of a prime, a power of 2 and a power of 3.
It has been verified that a(n) > 0 for all n = 2..3*10^9.
a(n) > 0 for n <= 10^11. - Jud McCranie, Jun 25 2023
a(n) > 0 for n < 10^12. - Jud McCranie, Jul 11 2023
a(n) > 0 for n <= 4*10^12. - Jud McCranie, Aug 17 2023

Examples

			a(2) = 1 since 2*2 = 2 + 2^0 + 3^0 with 2 prime.
a(3) = 2 since 2*3 = 2 + 2^0 + 3^1 = 3 + 2^1 + 3^0 with 2 and 3 prime.
		

Crossrefs

Programs

  • Mathematica
    tab={};Do[r=0;Do[If[PrimeQ[2n-2^x-3^y],r=r+1],{x,0,Log[2,2n-1]},{y,0,Log[3,2n-2^x]}];tab=Append[tab,r],{n,1,65}];Print[tab]

A303821 Number of ways to write 2*n as p + 2^x + 5^y, where p is a prime, and x and y are nonnegative integers.

Original entry on oeis.org

0, 1, 1, 3, 3, 4, 4, 5, 3, 6, 5, 5, 6, 6, 4, 7, 6, 7, 7, 10, 4, 9, 10, 6, 10, 8, 5, 8, 6, 7, 7, 9, 5, 8, 11, 6, 10, 11, 6, 11, 8, 6, 8, 11, 4, 9, 9, 7, 6, 11, 6, 7, 11, 7, 10, 11, 5, 11, 9, 6, 7, 6, 6, 5, 12, 7, 10, 15, 8, 15, 10, 11, 13, 11, 7, 9, 8, 9, 12, 14
Offset: 1

Views

Author

Zhi-Wei Sun, May 01 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n > 1. Moreover, for any integer n > 4, we can write 2*n as p + 2^x + 5^y, where p is an odd prime, and x and y are positive integers.
This has been verified for n up to 10^10.
See also A303934 and A304081 for further refinements, and A303932 and A304034 for similar conjectures.

Examples

			a(2) = 1 since 2*2 = 2 + 2^0 + 5^0 with 2 prime.
a(3) = 1 since 2*3 = 3 + 2^1 + 5^0 with 3 prime.
a(5616) = 2 since 2*5616 = 9059 + 2^11 + 5^3 = 10979 + 2^7 + 5^3 with 9059 and 10979 both prime.
		

Crossrefs

Programs

  • Mathematica
    tab={};Do[r=0;Do[If[PrimeQ[2n-2^k-5^m],r=r+1],{k,0,Log[2,2n-1]},{m,0,Log[5,2n-2^k]}];tab=Append[tab,r],{n,1,80}];Print[tab]

A303660 Number of ways to write 2*n+1 as p + 3^k + 5^m, where p is a prime, and k and m are nonnegative integers.

Original entry on oeis.org

0, 1, 2, 3, 3, 4, 4, 4, 4, 5, 3, 4, 4, 3, 6, 7, 5, 6, 8, 5, 5, 9, 6, 5, 8, 3, 6, 8, 4, 4, 7, 6, 4, 8, 6, 5, 9, 4, 4, 8, 3, 6, 8, 7, 4, 9, 6, 4, 9, 5, 5, 9, 6, 6, 11, 7, 7, 9, 5, 3, 8, 5, 3, 9, 7, 7, 11, 8, 8, 12
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 28 2018

Keywords

Comments

Note that a(21323543) = 0, i.e., the odd number 2*21323543 + 1 = 42647087 cannot be written as the sum of a prime, a power of 3 and a power of 5.

Examples

			a(2) = 1 since 2*2+1 = 3 + 3^0 + 5^0 with 3 prime.
a(3) = 2 since 2*3+1 = 3 + 3^1 + 5^0 = 5 + 3^0 + 5^0 with 3 and 5 prime.
		

Crossrefs

Programs

  • Mathematica
    tab={};Do[r=0;Do[If[PrimeQ[2n+1-5^x-3^y],r=r+1],{x,0,Log[5,2n]},{y,0,Log[3,2n+1-5^x]}];tab=Append[tab,r],{n,1,70}];Print[tab]

A303932 Number of ways to write 2*n as p + 2^k + 3^m, where p is a prime with 11 a quadratic residue modulo p, and k and m are nonnegative integers.

Original entry on oeis.org

0, 1, 1, 1, 3, 4, 2, 3, 3, 1, 3, 5, 2, 1, 4, 2, 1, 4, 3, 4, 4, 2, 3, 7, 4, 2, 6, 3, 2, 4, 4, 3, 3, 2, 4, 6, 2, 1, 6, 2, 2, 6, 5, 6, 5, 5, 6, 8, 3, 5, 8, 5, 3, 7, 6, 5, 7, 6, 9, 7, 5, 7, 7, 3, 5, 9, 5, 7, 9, 6, 11, 10, 5, 11, 10, 4, 5, 13, 3, 5
Offset: 1

Views

Author

Zhi-Wei Sun, May 02 2018

Keywords

Comments

Conjecture 1. a(n) > 0 for all n > 1, i.e., any even number greater than two can be written as the sum of a power 2, a power of 3 and a prime p with 11 a quadratic residue modulo p.
Conjecture 2. For any integer n > 2, we can write 2*n as p + 2^k + 3^m, where p is a prime with 11 a quadratic nonresidue modulo p, and k and m are nonnegative integers.
We have verified Conjectures 1 and 2 for n up to 5*10^8.

Examples

			a(2) = 1 since 2*2 = 2 + 2^0 + 3^0 with 11 a quadratic residue modulo the prime 2.
a(3) = 1 since 2*3 = 2 + 2^0 + 3^1 with 11 a quadratic residue modulo the prime 2.
a(10) = 1 since 2*10 = 7 + 2^2 + 3^2 with 11 a quadratic residue modulo the prime 7.
a(14) = 1 since 2*14 = 19 + 2^3 + 3^0 with 11 a quadratic residue modulo the prime 19.
a(17) = 1 since 2*17 = 5 + 2^1 + 3^3 with 11 a quadratic residue modulo the prime 5.
a(38) = 1 since 2*38 = 37 + 2^1 + 3^3 with 11 a quadratic residue modulo the prime 37.
		

Crossrefs

Programs

  • Mathematica
    PQ[n_]:=PQ[n]=n==2||(n>2&&PrimeQ[n]&&JacobiSymbol[11,n]==1);
    tab={};Do[r=0;Do[If[PQ[2n-2^k-3^m],r=r+1],{k,0,Log[2,2n-1]},{m,0,Log[3,2n-2^k]}];tab=Append[tab,r],{n,1,80}];Print[tab]

A303934 Number of ways to write 2*n as p + 2^k + 5^m with p prime and 2^k + 5^m squarefree, where k and m are nonnegative integers.

Original entry on oeis.org

0, 1, 1, 3, 3, 2, 2, 3, 3, 4, 3, 5, 4, 4, 3, 4, 5, 7, 4, 7, 4, 8, 7, 6, 7, 6, 5, 5, 5, 7, 5, 8, 5, 5, 8, 6, 9, 9, 6, 8, 6, 6, 7, 8, 4, 7, 8, 7, 3, 10, 6, 7, 8, 7, 7, 9, 5, 8, 7, 6, 5, 5, 6, 3, 11, 7, 9, 12, 8, 12, 10, 11, 11, 9, 7, 9, 7, 8, 8, 11, 7, 11, 8, 9, 15, 11, 8, 9, 8, 9
Offset: 1

Views

Author

Zhi-Wei Sun, May 03 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n > 1.
This has been verified for all n = 2..10^10.
Note that a(n) <= A303821(n).

Examples

			a(2) = 1 since 2*2 = 2 + 2^0 + 5^0 with 2 prime and 2^0 + 5^0 squarefree.
a(3) = 1 since 2*3 = 3 + 2^1 + 5^0 with 3 prime and 2^1 + 5^0 squarefree.
		

Crossrefs

Programs

  • Mathematica
    tab={};Do[r=0;Do[If[SquareFreeQ[2^k+5^m]&&PrimeQ[2n-2^k-5^m],r=r+1],{k,0,Log[2,2n-1]},{m,0,Log[5,2n-2^k]}];tab=Append[tab,r],{n,1,90}];Print[tab]

A304031 Number of ways to write 2*n as p + 2^k + 5^m with p prime and 2^k + 5^m a product of at most three distinct primes, where k and m are nonnegative integers.

Original entry on oeis.org

0, 1, 1, 3, 3, 2, 2, 3, 3, 4, 3, 5, 4, 4, 3, 4, 5, 7, 4, 7, 4, 8, 7, 6, 7, 6, 5, 5, 5, 7, 5, 8, 5, 5, 8, 6, 9, 9, 6, 8, 6, 6, 7, 8, 4, 7, 8, 7, 3, 10, 6, 7, 8, 7, 7, 9, 5, 8, 7, 6, 5, 5, 6, 3, 11, 7, 9, 12, 8, 12, 10, 11, 11, 9, 7, 9, 7, 8, 8, 11, 7, 11, 8, 9, 15, 11, 8, 9, 8, 9
Offset: 1

Views

Author

Zhi-Wei Sun, May 04 2018

Keywords

Comments

a(n) > 0 for all 1 < n <= 10^10 with the only exception n = 3114603841, and 2*3114603841 = 6219442049 + 2^3 + 5^10 with 6219442049 prime and 2^3 + 5^10 = 3*17*419*457 squarefree.
Note that a(n) <= A303934(n) <= A303821(n).

Examples

			a(3) = 1 since 2*3 = 3 + 2^1 + 5^0 with 3 = 2^1 + 5^0  prime.
a(7) = 2 since 2*7 = 7 + 2^1 + 5^1 with 7 = 2^1 + 5^1 prime, and 2*7 = 11 + 2^1 + 5^0 with 11 and 2^1 + 5^0 both prime.
a(42908) = 2 since 2*42908 = 85751 + 2^6 + 5^0 with 85751 prime and 2^6 + 5^0 = 5*13, and 2*42908 = 69431 + 2^14 + 5^0 with 69431 prime and 2^14 + 5^0 = 5*29*113.
		

Crossrefs

Programs

  • Mathematica
    qq[n_]:=qq[n]=SquareFreeQ[n]&&Length[FactorInteger[n]]<=3;
    tab={};Do[r=0;Do[If[qq[2^k+5^m]&&PrimeQ[2n-2^k-5^m],r=r+1],{k,0,Log[2,2n-1]},{m,0,Log[5,2n-2^k]}];tab=Append[tab,r],{n,1,90}];Print[tab]

A303949 Number of ways to write 2*n+1 as p + 2*(2^k+5^m) with p prime and 2^k+5^m a product of at most three distinct primes, where k and m are nonnegative integers.

Original entry on oeis.org

0, 0, 1, 2, 2, 2, 3, 5, 3, 3, 4, 3, 3, 4, 3, 4, 3, 4, 3, 4, 4, 5, 5, 4, 4, 5, 5, 6, 4, 3, 6, 7, 3, 6, 9, 7, 5, 8, 7, 6, 7, 9, 7, 8, 2, 8, 9, 5, 5, 6, 6, 7, 6, 6, 7, 10, 6, 7, 9, 5, 6, 8, 6, 3, 6, 7, 7, 8, 5, 10, 9, 8, 5, 9, 5, 7, 10, 5, 4, 10, 7, 6, 8, 6, 7, 8, 7, 6, 8, 6
Offset: 1

Views

Author

Zhi-Wei Sun, May 05 2018

Keywords

Comments

4787449 is the first value of n > 2 with a(n) = 0, and 2*4787449+1 = 9574899 has the unique representation as p + 2*(2^k+5^m): 9050609 + 2*(2^18+5^0) with 9050609 prime and 2^18+5^0 = 5*13*37*109.
See also A303934 and A304081 for related conjectures.

Examples

			a(3) = 1 since 2*3+1 = 3 + 2*(2^0+5^0) with 3 prime.
		

Crossrefs

Programs

  • Mathematica
    qq[n_]:=qq[n]=SquareFreeQ[n]&&Length[FactorInteger[n]]<=3;
    tab={};Do[r=0;Do[If[SquareFreeQ[2^k+5^m]&&PrimeQ[2n+1-2(2^k+5^m)],r=r+1],{k,0,Log[2,n]},{m,0,Log[5,n+1/2-2^k]}];tab=Append[tab,r],{n,1,90}];Print[tab]

A304032 Number of ways to write 2*n as p + 2^k + 3^m with p prime and 2^k + 3^m a product of at most two distinct primes, where k and m are nonnegative integers.

Original entry on oeis.org

0, 1, 1, 3, 4, 4, 4, 6, 6, 5, 8, 9, 4, 6, 7, 4, 9, 10, 6, 9, 10, 6, 11, 14, 7, 9, 11, 5, 10, 9, 6, 12, 10, 3, 11, 15, 7, 12, 16, 7, 9, 14, 9, 12, 14, 8, 12, 16, 5, 12, 18, 10, 12, 16, 9, 12, 19, 10, 13, 17, 6, 10, 15, 6, 10, 16, 10, 12, 15, 10, 17, 20, 8, 14, 15, 8, 11, 18, 9, 12
Offset: 1

Views

Author

Zhi-Wei Sun, May 04 2018

Keywords

Comments

The even number 58958 cannot be written as p + 2^k + 3^m with p and 2^k + 3^m both prime.
Clearly, a(n) <= A303702(n). We note that a(n) > 0 for all n = 2..5*10^8.
See also A304034 for a related conjecture.

Examples

			a(3) = 1 since 2*3 = 3 + 2^1 + 3^0 with 3 = 2^1 + 3^0 prime.
		

References

  • J. R. Chen, On the representation of a larger even integer as the sum of a prime and the product of at most two primes, Sci. Sinica 16(1973), 157-176.

Crossrefs

Programs

  • Mathematica
    qq[n_]:=qq[n]=SquareFreeQ[n]&&Length[FactorInteger[n]]<=2;
    tab={};Do[r=0;Do[If[qq[2^k+3^m]&&PrimeQ[2n-2^k-3^m],r=r+1],{k,0,Log[2,2n-1]},{m,0,Log[3,2n-2^k]}];tab=Append[tab,r],{n,1,80}];Print[tab]

A304122 Squarefree numbers of the form 2^k + 5^m, where k is a positive integer and m is a nonnegative integer.

Original entry on oeis.org

3, 5, 7, 13, 17, 21, 29, 33, 37, 41, 57, 65, 69, 89, 127, 129, 133, 141, 157, 253, 257, 281, 381, 517, 537, 627, 629, 633, 641, 689, 753, 881, 1049, 1137, 1149, 1649, 2049, 2053, 2073, 2173, 3127, 3129, 3133, 3157, 3189, 3253, 3637, 4097, 4101, 4121
Offset: 1

Views

Author

Zhi-Wei Sun, May 07 2018

Keywords

Comments

The conjecture in A304081 has the following equivalent version: Any even number greater than 4 can be written as the sum of a prime and a term of the current sequence, and also any odd number greater than 8 can be written as the sum of a prime and twice a term of the current sequence.

Examples

			a(1) = 3 since 3 = 2^1 + 5^0 is squarefree.
a(6) = 21 since 21 = 2^4 + 5^1 = 3*7 is squarefree.
		

Crossrefs

Programs

  • Mathematica
    V={}; Do[If[SquareFreeQ[2^k+5^m],V=Append[V,2^k+5^m]],{k,1,12},{m,0,5}];
    LL:=LL=Sort[DeleteDuplicates[V]];
    a[n_]:=a[n]=LL[[n]];
    Table[a[n],{n,1,50}]
Previous Showing 11-20 of 23 results. Next