cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A351619 a(n) = Sum_{p|n, p prime} (-1)^p.

Original entry on oeis.org

0, 1, -1, 1, -1, 0, -1, 1, -1, 0, -1, 0, -1, 0, -2, 1, -1, 0, -1, 0, -2, 0, -1, 0, -1, 0, -1, 0, -1, -1, -1, 1, -2, 0, -2, 0, -1, 0, -2, 0, -1, -1, -1, 0, -2, 0, -1, 0, -1, 0, -2, 0, -1, 0, -2, 0, -2, 0, -1, -1, -1, 0, -2, 1, -2, -1, -1, 0, -2, -1, -1, 0, -1, 0, -2, 0, -2, -1, -1, 0, -1, 0, -1, -1, -2, 0, -2, 0, -1, -1, -2, 0, -2, 0, -2, 0, -1, 0, -2, 0, -1
Offset: 1

Views

Author

Seiichi Manyama, Mar 02 2022

Keywords

Crossrefs

Programs

  • Mathematica
    A351619[n_] := 2*Boole[EvenQ[n]] - PrimeNu[n]; Array[A351619, 100] (* Paolo Xausa, Jan 28 2025 *)
  • PARI
    a(n) = my(f=factor(n)); sum(k=1, #f~, (-1)^f[k, 1]);
    
  • PARI
    my(N=99, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, isprime(k)*(-x)^k/(1-x^k))))
    
  • Python
    from sympy import primefactors
    def A351619(n): return (0 if n%2 else 2) - len(primefactors(n)) # Chai Wah Wu, Mar 02 2022

Formula

G.f.: Sum_{k>=1} (-x)^prime(k)/(1 - x^prime(k)).
a(n) = -A001221(n) if n is odd and a(n) = 2 - A001221(n) if n is even. - Chai Wah Wu, Mar 02 2022

A347103 G.f.: Sum_{k>=1} k * x^prime(k) / (1 + x^prime(k)).

Original entry on oeis.org

0, 1, 2, -1, 3, -1, 4, -1, 2, -2, 5, -3, 6, -3, 5, -1, 7, -1, 8, -4, 6, -4, 9, -3, 3, -5, 2, -5, 10, -4, 11, -1, 7, -6, 7, -3, 12, -7, 8, -4, 13, -5, 14, -6, 5, -8, 15, -3, 4, -2, 9, -7, 16, -1, 8, -5, 10, -9, 17, -6, 18, -10, 6, -1, 9, -6, 19, -8, 11, -6, 20, -3
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 18 2021

Keywords

Comments

a(n) is the sum of indices of prime divisors p|n such that n/p is odd, minus the sum of indices of prime divisors p|n such that n/p is even.

Crossrefs

Programs

  • Mathematica
    nmax = 72; CoefficientList[Series[Sum[k x^Prime[k]/(1 + x^Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[-DivisorSum[n, (-1)^(n/#) PrimePi[#] &, PrimeQ[#] &], {n, 1, 72}]
  • PARI
    a(n) = my(f=factor(n)[,1]); sum(k=1, #f, if ((n/f[k]) % 2, primepi(f[k]), -primepi(f[k]))); \\ Michel Marcus, Aug 19 2021

Formula

a(n) = -Sum_{p|n, p prime} (-1)^(n/p) * pi(p), where pi = A000720.

A352003 Expansion of e.g.f. Product_{k>=1} (1 + x^prime(k))^(1/prime(k)).

Original entry on oeis.org

1, 0, 1, 2, -3, 44, -35, 1014, -1127, 46808, 153081, 3240170, -30922859, 443621892, 331421077, 121899383774, 691635821745, 19657393214384, 424491327098353, 2132527815161298, -2864544697983059, 3885322666246386140, 22621061924336157261, 882556261002776755142
Offset: 0

Views

Author

Seiichi Manyama, Feb 28 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(prod(k=1, N, (1+isprime(k)*x^k)^(1/k))))
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N, sumdiv(k, d, isprime(d)*(-1)^(k/d+1))*x^k/k))))

Formula

E.g.f.: exp( Sum_{k>=1} A305614(k)*x^k/k ) where A305614(k) = Sum_{p|k, p prime} (-1)^(k/p+1).

A382511 Expansion of Sum_{p prime} x^p / (1 - x^p)^3.

Original entry on oeis.org

0, 1, 1, 3, 1, 9, 1, 10, 6, 18, 1, 31, 1, 31, 21, 36, 1, 66, 1, 65, 34, 69, 1, 114, 15, 94, 45, 115, 1, 196, 1, 136, 72, 156, 43, 249, 1, 193, 97, 246, 1, 357, 1, 263, 165, 279, 1, 436, 28, 380, 159, 361, 1, 549, 81, 442, 196, 438, 1, 753, 1, 499, 276, 528, 106
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 30 2025

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 65; CoefficientList[Series[Sum[x^Prime[k]/(1 - x^Prime[k])^3, {k, 1, nmax}], {x, 0, nmax}], x] // Rest

Formula

a(n) = Sum_{p|n, p prime} A000217(n/p).
a(n) = (A069359(n) + A322078(n)) / 2.
Previous Showing 11-14 of 14 results.