cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 63 results. Next

A305975 Filter sequence: All prime powers p^k, k >= 1, are allotted to distinct equivalence classes according to their exponent k, while all other numbers occur in singular equivalence classes of their own.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 6, 2, 7, 2, 8, 9, 10, 2, 11, 2, 12, 13, 14, 2, 15, 3, 16, 5, 17, 2, 18, 2, 19, 20, 21, 22, 23, 2, 24, 25, 26, 2, 27, 2, 28, 29, 30, 2, 31, 3, 32, 33, 34, 2, 35, 36, 37, 38, 39, 2, 40, 2, 41, 42, 43, 44, 45, 2, 46, 47, 48, 2, 49, 2, 50, 51, 52, 53, 54, 2, 55, 10, 56, 2, 57, 58, 59, 60, 61, 2, 62, 63, 64, 65, 66, 67, 68, 2, 69, 70, 71
Offset: 1

Views

Author

Antti Karttunen, Jul 02 2018

Keywords

Comments

Restricted growth sequence transform of A305974.
For all i, j: A305800(i) = A305800(j) => a(i) = a(j) => A305976(i) = A305976(j).

Crossrefs

Programs

  • PARI
    up_to = 100000;
    partialsums(f,up_to) = { my(v = vector(up_to), s=0); for(i=1,up_to,s += f(i); v[i] = s); (v); }
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    v065515 = partialsums(n -> (omega(n)<=1), up_to);
    A065515(n) = v065515[n];
    A085970(n) = (n - A065515(n));
    A305974(n) = if(1==n,n,my(e = isprimepower(n)); if(e,-e,1+A085970(n)));
    v305975 = rgs_transform(vector(up_to,n,A305974(n)));
    A305975(n) = v305975[n];

Formula

a(prime) = 2, a(prime^2) = 3, a(prime^3) = 5, a(prime^4) = 10, a(prime^5) = 19.

A305980 Filter sequence for a(Squarefree numbers > 1) = constant sequences.

Original entry on oeis.org

1, 2, 2, 3, 2, 2, 2, 4, 5, 2, 2, 6, 2, 2, 2, 7, 2, 8, 2, 9, 2, 2, 2, 10, 11, 2, 12, 13, 2, 2, 2, 14, 2, 2, 2, 15, 2, 2, 2, 16, 2, 2, 2, 17, 18, 2, 2, 19, 20, 21, 2, 22, 2, 23, 2, 24, 2, 2, 2, 25, 2, 2, 26, 27, 2, 2, 2, 28, 2, 2, 2, 29, 2, 2, 30, 31, 2, 2, 2, 32, 33, 2, 2, 34, 2, 2, 2, 35, 2, 36, 2, 37, 2, 2, 2, 38, 2, 39, 40, 41, 2, 2, 2, 42, 2, 2, 2, 43, 2, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Jul 02 2018

Keywords

Comments

For all i, j: A305800(i) = A305800(j) => a(i) = a(j).

Crossrefs

Programs

  • PARI
    up_to = 100000;
    partialsums(f,up_to) = { my(v = vector(up_to), s=0); for(i=1,up_to,s += f(i); v[i] = s); (v); }
    v057627 = partialsums(x -> !issquarefree(x),up_to);
    A057627(n) = v057627[n];
    A305980(n) = if(1==n,n,if(issquarefree(n),2,2+A057627(n)));

Formula

a(1) = 1; for n > 1, if A008966(n) = 1 [when n is in A005117], then a(n) = 2, otherwise a(n) = 2+A057627(n).

A317943 Filter sequence constructed from the coefficients of the Stern polynomials B(d,t) collected for each proper divisor d of n; Restricted growth sequence transform of A317942.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 14, 15, 2, 16, 17, 18, 19, 20, 2, 21, 2, 22, 23, 24, 25, 26, 2, 27, 28, 29, 2, 30, 2, 31, 32, 33, 2, 34, 35, 36, 37, 38, 2, 39, 40, 41, 42, 43, 2, 44, 2, 45, 46, 47, 48, 49, 2, 50, 51, 52, 2, 53, 2, 54, 55, 56, 57, 58, 2, 59, 60, 61, 2, 62, 63, 64, 65, 66, 2, 67, 68, 69, 70, 71, 72, 73, 2, 74, 75, 76, 2, 77, 2, 78, 79, 80, 2, 81, 2, 82, 83, 84, 2, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 86
Offset: 1

Views

Author

Antti Karttunen, Aug 12 2018

Keywords

Comments

For all i, j: a(i) = a(j) => A317837(i) = A317837(j).

Examples

			Proper divisors of 115 are 1, 5 and 23 and proper divisors of 125 are 1, 5 and 25. The divisors 1 and 5 occur in both, while for the Stern polynomials B(23,t) and B(25,t) (see A125184) the nonzero coefficients are {1, 2, 3, 1} and {1, 3, 2, 1}, that is, they are equal as multisets, thus A286378(23) = A286378(25). From this follows that a(115) = a(125).
		

Crossrefs

Cf. also A293217, A305793.
Differs from A305800 and A296073 for the first time at n=125, where a(125) = 86.

Programs

  • PARI
    \\ Needs also code from A286378:
    up_to = 65537;
    A317942(n) = { my(m=1); fordiv(n,d,if(dA286378(d)-1))); (m); };
    v317943 = rgs_transform(vector(up_to, n, A317942(n)));
    A317943(n) = v317943[n];

A320014 Filter sequence combining the binary expansions of proper divisors of n, grouped by their residue classes mod 3.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 14, 15, 2, 16, 17, 18, 19, 20, 2, 21, 2, 22, 23, 24, 25, 26, 2, 27, 28, 29, 2, 30, 2, 31, 32, 33, 2, 34, 35, 36, 37, 38, 2, 39, 40, 41, 42, 43, 2, 44, 2, 45, 46, 47, 48, 49, 2, 50, 51, 52, 2, 53, 2, 54, 55, 56, 57, 58, 2, 59, 60, 61, 2, 62, 63, 64, 65, 66, 2, 67, 68, 69, 70, 71, 72, 73, 2, 74, 75
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2018

Keywords

Comments

Restricted growth sequence transform of triple [A319990(n), A319991(n), A319992(n)], or equally, of ordered pair [A320010(n), A320013(n)].
Apart from trivial cases of primes, all other duplicates in range 1 .. 65537 seem to be squarefree semiprimes of the form 3k+1, i.e., both prime factors are either of the form 3k+1 or of the form 3k+2. Question: Is there any reason that more complicated cases would not occur later?
For all i, j: a(i) = a(j) => A293215(i) = A293215(j).
Differs from A319693 first for n = 108. - Georg Fischer, Oct 16 2018

Examples

			The first set of numbers that forms a nontrivial equivalence class is [295, 583, 799, 943] = [5*59, 11*53, 17*47, 23*41]. The prime factors in these are all of the form 3k+2, and when the binary expansions of the factors (like e.g., "101" for 5 and "111011" for 59 or "10111" for 23 and "101001" for 41) are overlaid, the resulting bit vector is always [1, 1, 1, 1, 1, 1^2], with the least significant bit-position containing 2 copies of 1's. Thus we have a(295) = a(583) = a(799) = a(943).
		

Crossrefs

Differs from A305800 for the first time at n=583, where a(583) = 234, while A305800(478).

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
    A319990(n) = { my(m=1); fordiv(n,d,if((dA019565(d))); m; };
    A319991(n) = { my(m=1); fordiv(n,d,if((dA019565(d))); m; };
    A319992(n) = { my(m=1); fordiv(n,d,if((dA019565(d))); m; };
    v320014 = rgs_transform(vector(up_to,n,[A319990(n),A319991(n),A319992(n)]));
    A320014(n) = v320014[n];

A322826 Lexicographically earliest such sequence a that a(i) = a(j) => A052126(i) = A052126(j) for all i, j.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 4, 2, 1, 3, 1, 2, 4, 5, 1, 6, 1, 3, 4, 2, 1, 5, 7, 2, 8, 3, 1, 6, 1, 9, 4, 2, 7, 10, 1, 2, 4, 5, 1, 6, 1, 3, 8, 2, 1, 9, 11, 12, 4, 3, 1, 13, 7, 5, 4, 2, 1, 10, 1, 2, 8, 14, 7, 6, 1, 3, 4, 12, 1, 15, 1, 2, 16, 3, 11, 6, 1, 9, 17, 2, 1, 10, 7, 2, 4, 5, 1, 13, 11, 3, 4, 2, 7, 14, 1, 18, 8, 19, 1, 6, 1, 5, 16
Offset: 1

Views

Author

Antti Karttunen, Dec 27 2018

Keywords

Comments

Restricted growth sequence transform of A052126, or equally, of A322820.
For all i, j:
A300226(i) = A300226(j) => a(i) = a(j),
a(i) = a(j) => A322813(i) = A322813(j),
a(i) = a(j) => A322819(i) = A322819(j).
For all i, j > 1:
a(i) = a(j) => A001222(i) = A001222(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A006530(n) = if(n>1, vecmax(factor(n)[, 1]), 1);
    A052126(n) = (n/A006530(n));
    v322826 = rgs_transform(vector(up_to,n,A052126(n)));
    A322826(n) = v322826[n];

A329351 Lexicographically earliest infinite sequence such that a(i) = a(j) => A329350(i) = A329350(j) for all i, j.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 14, 15, 2, 16, 4, 12, 9, 17, 2, 18, 2, 19, 20, 21, 22, 23, 2, 24, 25, 26, 2, 27, 2, 28, 29, 30, 2, 31, 32, 33, 34, 35, 2, 36, 37, 38, 39, 18, 2, 40, 2, 41, 42, 43, 44, 45, 2, 46, 47, 48, 2, 49, 2, 50, 51, 52, 44, 53, 2, 54, 55, 56, 2, 57, 58, 59, 60, 61, 2, 62, 63, 64, 65, 66, 29, 67, 2, 68, 69
Offset: 1

Views

Author

Antti Karttunen, Nov 12 2019

Keywords

Comments

Restricted growth sequence transform of A329350.
For all i, j:
A305800(i) = A305800(j) => a(i) = a(j),
a(i) = a(j) => A069359(i) = A069359(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A329350(n) = { my(m=1); fordiv(n,d,if(isprime(n/d), m *= A276086(d))); (m); };
    v329351 = rgs_transform(vector(up_to, n, A329350(n)));
    A329351(n) = v329351[n];

A351235 Lexicographically earliest infinite sequence such that a(i) = a(j) => A046523(i) = A046523(j), A327858(i) = A327858(j) and A345000(i) = A345000(j) for all i, j >= 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 14, 7, 2, 15, 16, 17, 18, 8, 2, 19, 2, 20, 21, 7, 22, 23, 2, 24, 10, 25, 2, 19, 2, 26, 27, 28, 2, 29, 30, 31, 14, 32, 2, 33, 10, 25, 10, 7, 2, 34, 2, 9, 27, 35, 36, 19, 2, 13, 10, 19, 2, 37, 2, 9, 38, 39, 36, 19, 2, 40, 41, 7, 2, 34, 10, 17, 10, 42, 2
Offset: 1

Views

Author

Antti Karttunen, Feb 06 2022

Keywords

Comments

Restricted growth sequence transform of the triplet [A046523(n), A327858(n), A345000(n)].
For all i, j >= 1:
A305800(i) = A305800(j) => a(i) = a(j) => A351085(i) = A351085(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A327858(n) = gcd(A003415(n),A276086(n));
    A345000(n) = gcd(A003415(n),A003415(A276086(n)));
    Aux351235(n) = [A046523(n), A327858(n), A345000(n)];
    v351235 = rgs_transform(vector(up_to,n,Aux351235(n)));
    A351235(n) = v351235[n];

A319693 Filter sequence combining sopfr(d) from all proper divisors d of n, where sopfr(d) is A001414(d) = sum of primes dividing d with repetition.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 14, 15, 2, 16, 17, 18, 19, 20, 2, 21, 2, 22, 23, 24, 25, 26, 2, 27, 28, 29, 2, 30, 2, 31, 32, 33, 2, 34, 35, 36, 37, 38, 2, 39, 40, 41, 42, 43, 2, 44, 2, 45, 46, 47, 48, 49, 2, 50, 51, 52, 2, 53, 2, 54, 55, 56, 57, 58, 2, 59, 60, 61, 2, 62, 63, 64, 65, 66, 2, 67, 68, 69, 70, 71, 72, 73, 2, 74, 75, 76, 2, 77, 2, 78, 79, 80, 2, 73, 2, 81, 82, 83, 2, 84, 85
Offset: 1

Views

Author

Antti Karttunen, Oct 02 2018

Keywords

Comments

Restricted growth sequence transform of A319692.
For all i, j: a(i) = a(j) => A305611(i) = A305611(j).

Examples

			The proper divisors of  96 are 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, while
the proper divisors of 108 are 1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54.
It happens that sopfr(8) = sopfr(9), sopfr(16) = sopfr(18), sopfr(24) = sopfr(27), sopfr(32) = sopfr(36) and sopfr(48) = sopfr(54), and the rest of proper divisors (1, 2, 3, 4, 6, 12) are shared by both numbers, from which follows that by taking product of sopfr over proper divisors gives an identical result for both, thus a(96) = a(108). Here sopfr = A001414.
		

Crossrefs

Cf. also A319353.
Differs from A305800, A296073 and A317943 for the first time at n=108, as here a(108) = 73.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A001414(n) = ((n=factor(n))[, 1]~*n[, 2]); \\ From A001414.
    A319692(n) = { my(m=1); fordiv(n, d, if(dA001414(d)))); (m); };
    v319693 = rgs_transform(vector(up_to,n,A319692(n)));
    A319693(n) = v319693[n];

A319706 Filter sequence which for primes p records the prime signature of 2p+1, and for all other numbers assigns a unique number.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 5, 6, 7, 8, 2, 9, 10, 11, 12, 13, 5, 14, 5, 15, 16, 17, 2, 18, 19, 20, 21, 22, 2, 23, 24, 25, 26, 27, 28, 29, 24, 30, 31, 32, 2, 33, 5, 34, 35, 36, 5, 37, 38, 39, 40, 41, 2, 42, 43, 44, 45, 46, 5, 47, 5, 48, 49, 50, 51, 52, 53, 54, 55, 56, 5, 57, 24, 58, 59, 60, 61, 62, 5, 63, 64, 65, 2, 66, 67, 68, 69, 70, 2, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 5
Offset: 1

Views

Author

Antti Karttunen, Sep 26 2018

Keywords

Comments

Restricted growth sequence transform of function f defined as f(n) = A046523(2n+1) when n is a prime, otherwise -n.
For all i, j:
A305810(i) = A305810(j) => a(i) = a(j),
and
a(i) = a(j) => A305800(i) = A305800(j),
a(i) = a(j) => A305978(i) = A305978(j),
a(i) = a(j) => A305985(i) = A305985(j).

Crossrefs

Cf. A005384 (positions of 2's), A234095 (positions of 5's).

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A319706aux(n) = if(isprime(n),A046523(n+n+1),-n);
    v319706 = rgs_transform(vector(up_to,n,A319706aux(n)));
    A319706(n) = v319706[n];

A329381 Lexicographically earliest infinite sequence such that a(i) = a(j) => A329380(i) = A329380(j) for all i, j.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 14, 15, 2, 16, 17, 18, 19, 20, 2, 21, 2, 22, 23, 24, 25, 26, 2, 27, 28, 29, 2, 30, 2, 16, 31, 32, 2, 33, 34, 35, 36, 37, 2, 38, 39, 40, 41, 42, 2, 43, 2, 44, 45, 46, 47, 48, 2, 49, 50, 51, 2, 52, 2, 53, 54, 55, 47, 56, 2, 57, 58, 59, 2, 60, 61, 62, 63, 64, 2, 65, 66, 67, 68, 69, 70, 71, 2, 72, 73
Offset: 1

Views

Author

Antti Karttunen, Nov 12 2019

Keywords

Comments

Restricted growth sequence transform of A329380.
For all i, j:
A305800(i) = A305800(j) => a(i) = a(j),
a(i) = a(j) => A323599(i) = A323599(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A329380(n) = { my(m=1); fordiv(n,d,m *= A276086(d)^omega(n/d)); (m); };
    v329381 = rgs_transform(vector(up_to, n, A329380(n)));
    A329381(n) = v329381[n];
Previous Showing 21-30 of 63 results. Next