cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-35 of 35 results.

A368099 Triangle read by rows where T(n,k) is the number of non-isomorphic k-element sets of finite nonempty multisets with cardinalities summing to n, or strict multiset partitions of weight n and length k.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 3, 4, 1, 0, 5, 12, 5, 1, 0, 7, 28, 22, 5, 1, 0, 11, 66, 83, 31, 5, 1, 0, 15, 134, 252, 147, 34, 5, 1, 0, 22, 280, 726, 620, 203, 35, 5, 1, 0, 30, 536, 1946, 2283, 1069, 235, 35, 5, 1, 0, 42, 1043, 4982, 7890, 5019, 1469, 248, 35, 5, 1
Offset: 0

Views

Author

Gus Wiseman, Dec 31 2023

Keywords

Examples

			Triangle begins:
    1
    0    1
    0    2    1
    0    3    4    1
    0    5   12    5    1
    0    7   28   22    5    1
    0   11   66   83   31    5    1
    0   15  134  252  147   34    5    1
    0   22  280  726  620  203   35    5    1
    0   30  536 1946 2283 1069  235   35    5    1
    0   42 1043 4982 7890 5019 1469  248   35    5    1
    ...
Row n = 4 counts the following representatives:
  .  {{1,1,1,1}}  {{1},{1,1,1}}  {{1},{2},{1,1}}  {{1},{2},{3},{4}}
     {{1,1,1,2}}  {{1},{1,1,2}}  {{1},{2},{1,2}}
     {{1,1,2,2}}  {{1},{1,2,2}}  {{1},{2},{1,3}}
     {{1,1,2,3}}  {{1},{1,2,3}}  {{1},{2},{3,3}}
     {{1,2,3,4}}  {{1},{2,2,2}}  {{1},{2},{3,4}}
                  {{1},{2,2,3}}
                  {{1},{2,3,4}}
                  {{1,1},{1,2}}
                  {{1,1},{2,2}}
                  {{1,1},{2,3}}
                  {{1,2},{1,3}}
                  {{1,2},{3,4}}
		

Crossrefs

Row sums are A316980, connected case A319557.
For multiset partitions we have A317533, connected A322133.
Counting connected components instead of edges gives A321194.
For normal multiset partitions we have A330787, row sums A317776.
For set multipartitions we have A334550.
For set-systems we have A368096, row-sums A283877 (connected A300913).
A000110 counts set-partitions, non-isomorphic A000041.
A003465 counts covering set-systems, unlabeled A055621.
A007716 counts non-isomorphic multiset partitions, connected A007718.
A049311 counts non-isomorphic set multipartitions, connected A056156.
A058891 counts set-systems, unlabeled A000612, connected A323818.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mpm[n_]:=Join@@Table[Union[Sort[Sort /@ (#/.x_Integer:>s[[x]])]&/@sps[Range[n]]],{s,Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n]}];
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])], {p,Permutations[Union@@m]}]]];
    Table[Length[Union[brute /@ Select[mpm[n],UnsameQ@@#&&Length[#]==k&]]], {n,0,5},{k,0,n}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={EulerT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k))}
    G(n)={my(s=0); forpart(q=n, my(p=sum(t=1, n, y^t*subst(x*Ser(K(q, t, n\t))/t, x, x^t))); s+=permcount(q)*exp(p-subst(subst(p, x, x^2), y, y^2))); s/n!}
    T(n)={[Vecrev(p) | p <- Vec(G(n))]}
    { my(A=T(10)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 11 2024

A321177 Heinz numbers of integer partitions that are the vertex-degrees of some set system with no singletons.

Original entry on oeis.org

1, 4, 8, 12, 16, 18, 24, 27, 32, 36, 40
Offset: 1

Views

Author

Gus Wiseman, Oct 29 2018

Keywords

Comments

A set system is a finite set of finite nonempty sets.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			Each term paired with its Heinz partition and a realizing set system:
  1:       (): {}
  4:     (11): {{1,2}}
  8:    (111): {{1,2,3}}
  12:   (211): {{1,2},{1,3}}
  16:  (1111): {{1,2,3,4}}
  18:   (221): {{1,2},{1,2,3}}
  24:  (2111): {{1,2},{1,3,4}}
  27:   (222): {{1,2},{1,3},{2,3}}
  32: (11111): {{1,2,3,4,5}}
  36:  (2211): {{1,2},{1,2,3,4}}
  40:  (3111): {{1,2},{1,3},{1,4}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    hyp[m_]:=Select[mps[m],And[And@@UnsameQ@@@#,UnsameQ@@#,Min@@Length/@#>1]&];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[20],!hyp[nrmptn[#]]=={}&]

A330196 Number of unlabeled set-systems covering n vertices with no endpoints.

Original entry on oeis.org

1, 0, 1, 20, 1754
Offset: 0

Views

Author

Gus Wiseman, Dec 05 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. An endpoint is a vertex appearing only once (degree 1).

Examples

			Non-isomorphic representatives of the a(3) = 20 set-systems:
  {12}{13}{23}
  {1}{23}{123}
  {12}{13}{123}
  {1}{2}{13}{23}
  {1}{2}{3}{123}
  {1}{12}{13}{23}
  {1}{2}{13}{123}
  {1}{12}{13}{123}
  {1}{12}{23}{123}
  {12}{13}{23}{123}
  {1}{2}{3}{12}{13}
  {1}{2}{12}{13}{23}
  {1}{2}{3}{12}{123}
  {1}{2}{12}{13}{123}
  {1}{2}{13}{23}{123}
  {1}{12}{13}{23}{123}
  {1}{2}{3}{12}{13}{23}
  {1}{2}{3}{12}{13}{123}
  {1}{2}{12}{13}{23}{123}
  {1}{2}{3}{12}{13}{23}{123}
		

Crossrefs

First differences of the non-covering version A330124.
The "multi" version is A302545.
Unlabeled set-systems with no endpoints counted by vertices are A317794.
Unlabeled set-systems with no endpoints counted by weight are A330054.
Unlabeled set-systems counted by vertices are A000612.
Unlabeled set-systems counted by weight are A283877.

A321185 Number of integer partitions of n that are the vertex-degrees of some strict antichain of sets with no singletons.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 5, 5, 9, 11, 17, 20
Offset: 0

Views

Author

Gus Wiseman, Oct 29 2018

Keywords

Comments

A strict antichain is a finite set of finite nonempty sets, none of which is a subset of any other.

Examples

			The a(2) = 1 through a(9) = 11 partitions:
  (11)  (111)  (211)   (2111)   (222)     (2221)     (2222)      (3222)
               (1111)  (11111)  (2211)    (22111)    (3221)      (22221)
                                (3111)    (31111)    (22211)     (32211)
                                (21111)   (211111)   (32111)     (33111)
                                (111111)  (1111111)  (41111)     (222111)
                                                     (221111)    (321111)
                                                     (311111)    (411111)
                                                     (2111111)   (2211111)
                                                     (11111111)  (3111111)
                                                                 (21111111)
                                                                 (111111111)
The a(8) = 9 integer partitions together with a realizing strict antichain for each (the parts of the partition count the appearances of each vertex in the antichain):
     (41111): {{1,2},{1,3},{1,4},{1,5}}
      (3221): {{1,2},{1,3},{1,4},{2,3}}
     (32111): {{1,3},{1,2,4},{1,2,5}}
    (311111): {{1,2},{1,3},{1,4,5,6}}
      (2222): {{1,2},{1,3,4},{2,3,4}}
     (22211): {{1,2,3,4},{1,2,3,5}}
    (221111): {{1,2,3},{1,2,4,5,6}}
   (2111111): {{1,2},{1,3,4,5,6,7}}
  (11111111): {{1,2,3,4,5,6,7,8}}
		

Crossrefs

Programs

  • Mathematica
    submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]];
    stableQ[u_]:=Apply[And,Outer[#1==#2||!submultisetQ[#1,#2]&&!submultisetQ[#2,#1]&,u,u,1],{0,1}];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    anti[m_]:=Select[mps[m],And[And@@UnsameQ@@@#,UnsameQ@@#,Min@@Length/@#>1,stableQ[#]]&];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    Table[Length[Select[strnorm[n],anti[#]!={}&]],{n,8}]

A321188 Number of set systems with no singletons whose multiset union is row n of A305936 (a multiset whose multiplicities are the prime indices of n).

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 4, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 1, 0, 0, 0, 0, 11, 0, 0, 0, 4, 0, 0, 0, 1
Offset: 1

Views

Author

Gus Wiseman, Oct 29 2018

Keywords

Comments

A set system is a finite set of finite nonempty sets.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(36) = 4 set systems with no singletons whose multiset union is {1,1,2,2,3,4}:
  {{1,2},{1,2,3,4}}
  {{1,2,3},{1,2,4}}
  {{1,2},{1,3},{2,4}}
  {{1,2},{1,4},{2,3}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    hyp[m_]:=Select[mps[m],And[And@@UnsameQ@@@#,UnsameQ@@#,Min@@Length/@#>1]&];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Table[Length[hyp[nrmptn[n]]],{n,30}]
Previous Showing 31-35 of 35 results.