cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A324354 Total number of occurrences of 4 in the (signed) displacement sets of all permutations of [n+4] divided by 4!.

Original entry on oeis.org

0, 1, 9, 76, 679, 6576, 69299, 792926, 9812079, 130741156, 1867777339, 28494131106, 462487232519, 7959671021576, 144813873037539, 2777366346993766, 56009230972732639, 1184896664408025036, 26240470547134420619, 607133649024919944266, 14649976322598313989879
Offset: 0

Views

Author

Alois P. Heinz, Feb 23 2019

Keywords

Crossrefs

Column k=4 of A324362.
Cf. A306234.

Programs

  • Maple
    a:= n-> (k-> -add((-1)^j*binomial(n, j)*(n+k-j)!, j=1..n)/k!)(4):
    seq(a(n), n=0..23);
  • Mathematica
    m = 23;
    CoefficientList[(1-Exp[-x])/(1-x)^5 + O[x]^(m+1), x]*Range[0, m]! (* Jean-François Alcover, May 03 2021 *)

Formula

E.g.f.: (1-exp(-x))/(1-x)^5.
a(n) = -1/4! * Sum_{j=1..n} (-1)^j * binomial(n,j) * (n+4-j)!.
a(n) = A306234(n+4,4).

A324355 Total number of occurrences of 5 in the (signed) displacement sets of all permutations of [n+5] divided by 5!.

Original entry on oeis.org

0, 1, 11, 109, 1115, 12151, 142205, 1788361, 24118967, 347811859, 5345895929, 87298986325, 1510075068419, 27590646911023, 531082929791861, 10743610293871681, 227906995674679535, 5059315590877577131, 117308151182930808977, 2835988521500605314829
Offset: 0

Views

Author

Alois P. Heinz, Feb 23 2019

Keywords

Crossrefs

Column k=5 of A324362.
Cf. A306234.

Programs

  • Maple
    a:= n-> (k-> -add((-1)^j*binomial(n, j)*(n+k-j)!, j=1..n)/k!)(5):
    seq(a(n), n=0..23);
  • Mathematica
    m = 23;
    CoefficientList[(1-Exp[-x])/(1-x)^6 + O[x]^(m+1), x]*Range[0, m]! (* Jean-François Alcover, May 03 2021 *)

Formula

E.g.f.: (1-exp(-x))/(1-x)^6.
a(n) = -1/5! * Sum_{j=1..n} (-1)^j * binomial(n,j) * (n+5-j)!.
a(n) = A306234(n+5,5).

A324356 Total number of occurrences of 6 in the (signed) displacement sets of all permutations of [n+6] divided by 6!.

Original entry on oeis.org

0, 1, 13, 148, 1707, 20686, 266321, 3652608, 53339831, 827870338, 13624599309, 237169578724, 4356110013107, 84220077081414, 1710164008931657, 36396070427846536, 810244122520224111, 18833465673721387018, 456310533309915775301, 11505888654389005045548
Offset: 0

Views

Author

Alois P. Heinz, Feb 23 2019

Keywords

Crossrefs

Column k=6 of A324362.
Cf. A306234.

Programs

  • Maple
    a:= n-> (k-> -add((-1)^j*binomial(n, j)*(n+k-j)!, j=1..n)/k!)(6):
    seq(a(n), n=0..23);
  • Mathematica
    With[{nn=20},CoefficientList[Series[(1-Exp[-x])/(1-x)^7,{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Jul 06 2021 *)

Formula

E.g.f.: (1-exp(-x))/(1-x)^7.
a(n) = -1/6! * Sum_{j=1..n} (-1)^j * binomial(n,j) * (n+6-j)!.
a(n) = A306234(n+6,6).

A324357 Total number of occurrences of 7 in the (signed) displacement sets of all permutations of [n+7] divided by 7!.

Original entry on oeis.org

0, 1, 15, 193, 2479, 33081, 464807, 6906257, 108589887, 1805179321, 31676392519, 585609896433, 11383428770303, 232204651095353, 4961029124266599, 110811507291845521, 2583228239189752447, 62748345739947178617, 1585780756628964990407, 41635723030339339863281
Offset: 0

Views

Author

Alois P. Heinz, Feb 23 2019

Keywords

Crossrefs

Column k=7 of A324362.
Cf. A306234.

Programs

  • Maple
    a:= n-> (k-> -add((-1)^j*binomial(n, j)*(n+k-j)!, j=1..n)/k!)(7):
    seq(a(n), n=0..23);

Formula

E.g.f.: (1-exp(-x))/(1-x)^8.
a(n) = -1/7! * Sum_{j=1..n} (-1)^j * binomial(n,j) * (n+7-j)!.
a(n) = A306234(n+7,7).

A324358 Total number of occurrences of 8 in the (signed) displacement sets of all permutations of [n+8] divided by 8!.

Original entry on oeis.org

0, 1, 17, 244, 3455, 50356, 766943, 12274858, 206788751, 3666278080, 68339173319, 1337340802942, 27431518405607, 588814390368244, 13204430589422015, 308877966133175746, 7525275697320564383, 190678032594396773128, 5017985343328106906711, 136977444553573371090790
Offset: 0

Views

Author

Alois P. Heinz, Feb 23 2019

Keywords

Crossrefs

Column k=8 of A324362.
Cf. A306234.

Programs

  • Maple
    a:= n-> (k-> -add((-1)^j*binomial(n, j)*(n+k-j)!, j=1..n)/k!)(8):
    seq(a(n), n=0..23);

Formula

E.g.f.: (1-exp(-x))/(1-x)^9.
a(n) = -1/8! * Sum_{j=1..n} (-1)^j * binomial(n,j) * (n+8-j)!.
a(n) = A306234(n+8,8).

A324359 Total number of occurrences of 9 in the (signed) displacement sets of all permutations of [n+9] divided by 9!.

Original entry on oeis.org

0, 1, 19, 301, 4659, 73651, 1208849, 20736801, 372683159, 7020426511, 138543438429, 2861318625661, 61767341913539, 1391789835244251, 32689488282841529, 799220290375798681, 20312800343333343279, 535995638431063608871, 14665906835087251866389
Offset: 0

Views

Author

Alois P. Heinz, Feb 23 2019

Keywords

Crossrefs

Column k=9 of A324362.
Cf. A306234.

Programs

  • Magma
    [0] cat [(-1/Factorial(9)) * &+[(-1)^j * Binomial(n,j) * Factorial(n+9-j) : j in [1..n]]: n in [1..20]]; // Vincenzo Librandi, Jun 06 2019
  • Maple
    a:= n-> (k-> -add((-1)^j*binomial(n, j)*(n+k-j)!, j=1..n)/k!)(9):
    seq(a(n), n=0..23);
  • Mathematica
    Range[0, 20]! CoefficientList[Series[(1 - Exp[-x])/(1 - x)^10, {x, 0, 20}], x] (* Vincenzo Librandi, Jun 06 2019 *)

Formula

E.g.f.: (1-exp(-x))/(1-x)^10.
a(n) = -1/9! * Sum_{j=1..n} (-1)^j * binomial(n,j) * (n+9-j)!.
a(n) = A306234(n+9,9).

A324360 Total number of occurrences of 10 in the (signed) displacement sets of all permutations of [n+10] divided by 10!.

Original entry on oeis.org

0, 1, 21, 364, 6115, 104226, 1834205, 33576236, 641293047, 12792063934, 266464077769, 5792423481120, 131276423686979, 3098383343174978, 76066855087291221, 1940223116685166996, 51356370210296015215, 1409053932006095867526, 40028877611196977481857
Offset: 0

Views

Author

Alois P. Heinz, Feb 23 2019

Keywords

Crossrefs

Column k=10 of A324362.
Cf. A306234.

Programs

  • Maple
    a:= n-> (k-> -add((-1)^j*binomial(n, j)*(n+k-j)!, j=1..n)/k!)(10):
    seq(a(n), n=0..23);
  • Mathematica
    With[{nn=20},CoefficientList[Series[(1-Exp[-x])/(1-x)^11,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Sep 04 2023 *)

Formula

E.g.f.: (1-exp(-x))/(1-x)^11.
a(n) = -1/10! * Sum_{j=1..n} (-1)^j * binomial(n,j) * (n+10-j)!.
a(n) = A306234(n+10,10).
Previous Showing 11-17 of 17 results.