cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A350738 Expansion of Sum_{k>=0} (-1)^k * x^(k^2) * Product_{j=1..k} (1+x^j).

Original entry on oeis.org

1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -2, -1, -1, -1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 0, 0, -1, -2, -2, -3, -3, -3, -3, -3, -3, -1, -1, 0, 1, 1, 3, 4, 4, 4, 5, 5, 5, 5, 3, 3, 3, 1, 0, -1, -3, -4, -4, -6, -7, -7, -8, -8, -8, -7, -7, -6, -5, -4, -2, -1, 1, 3, 5, 6, 8, 9, 10, 12, 13, 13, 12, 13, 12, 11, 11, 9, 7, 5, 3, 0
Offset: 0

Views

Author

Seiichi Manyama, Jan 12 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=99, x='x+O('x^N)); Vec(sum(k=0, sqrtint(N), (-1)^k*x^k^2*prod(j=1, k, 1+x^j)))
    
  • Python
    from math import prod, isqrt
    from sympy import Poly
    from sympy.abc import x
    def A350738(n): return Poly(sum((-1 if k % 2 else 1)*x**(k**2)*prod(1+x**j for j in range(1,k+1)) for k in range(isqrt(n+1)+1))).all_coeffs()[-n-1] # Chai Wah Wu, Jan 14 2022

A377080 G.f.: Sum_{k>=1} x^(2*k^2) * Product_{j=1..k} (1 + x^j).

Original entry on oeis.org

0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 3, 4, 4, 4, 5, 5, 5, 5, 4, 4
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 15 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 150; CoefficientList[Series[Sum[x^(2*k^2)*Product[1+x^j, {j, 1, k}], {k, 1, Sqrt[nmax/2]}], {x, 0, nmax}], x]

Formula

a(n) ~ (1+r) * exp(sqrt((40*log(r)^2 + 4*polylog(2, 1/(1+r)) - Pi^2/3)*n)) / (2*sqrt((4 + 5*r)*n)), where r = A230152 = 0.856674883854502874852324... is the real root of the equation r^4*(1+r) = 1.

A377081 G.f.: Sum_{k>=1} x^(3*k^2) * Product_{j=1..k} (1 + x^j).

Original entry on oeis.org

0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 2
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 15 2024

Keywords

Comments

In general, if m > 0 and g.f. = Sum_{k>=1} x^(m*k^2) * Product_{j=1..k} (1 + x^j), then a(n) ~ (1+r) * exp(sqrt((4*m*(2*m+1)*log(r)^2 + 4*polylog(2, 1/(1+r)) - Pi^2/3)*n)) / (2*sqrt((r + 2*m*(1+r))*n)), where r is the smallest positive real root of the equation r^(2*m)*(1+r) = 1.

Crossrefs

Cf. A306734 (m=1), A377080 (m=2).

Programs

  • Mathematica
    nmax = 200; CoefficientList[Series[Sum[x^(3*k^2)*Product[1+x^j, {j, 1, k}], {k, 1, Sqrt[nmax/3]}], {x, 0, nmax}], x]

Formula

a(n) ~ (1+r) * exp(sqrt((84*log(r)^2 + 4*polylog(2, 1/(1+r)) - Pi^2/3)*n)) / (2*sqrt((6 + 7*r)*n)), where r = A230154 = 0.898653712628699293260875722... is the real root of the equation r^6*(1+r) = 1.

A376632 G.f.: Sum_{k>=0} x^(k^2) * Product_{j=1..k} (1 + x^(2*j)).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 2, 1, 1, 1, 1, 1, 1, 2, 0, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 3, 2, 3, 1, 3, 1, 3, 2, 3, 2, 3, 3, 2, 4, 3, 4, 2, 4, 2, 5, 3, 5, 2, 5, 3, 5, 4, 4, 5, 5, 5, 5, 6, 4, 7, 4, 7, 4, 8, 4, 8, 5, 8, 6, 8, 6, 9, 7, 8, 8, 8, 9, 8, 10
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 30 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Sum[x^(k^2)*Product[1+x^(2*j), {j, 1, k}], {k, 0, Sqrt[nmax]}], {x, 0, nmax}], x]
    nmax = 100; p = 1; s = 1; Do[p = Expand[p*(1 + x^(2*k))*x^(2*k - 1)]; p = Take[p, Min[nmax + 1, Exponent[p, x] + 1, Length[p]]]; s += p;, {k, 1, Sqrt[nmax]}]; Take[CoefficientList[s, x], nmax + 1]

Formula

a(n) ~ sqrt(1 + 3/sqrt(5)) * exp(Pi*sqrt(n/30)) / (4*sqrt(n)).

A306911 Expansion of Sum_{k>=0} x^(k^2) * Product_{j=1..k} (1 + x^j)^j.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 2, 2, 1, 2, 1, 2, 5, 4, 7, 9, 7, 10, 9, 9, 13, 13, 18, 27, 31, 42, 53, 61, 71, 83, 95, 98, 115, 131, 147, 176, 207, 258, 313, 395, 481, 581, 721, 848, 1014, 1179, 1367, 1586, 1804, 2064, 2338, 2698, 3083, 3559, 4142, 4819, 5732, 6768, 8036, 9582, 11426
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 16 2019

Keywords

Crossrefs

Programs

  • Maple
    N:= 100:
    S:= series(add(x^(k^2)*mul((1+x^j)^j,j=1..min(k,N-k^2)),k=0..floor(sqrt(N))), x, N+1):
    seq(coeff(S,x,n),n=0..N); # Robert Israel, Apr 10 2019
  • Mathematica
    nmax = 60; CoefficientList[Series[Sum[x^(k^2) Product[(1 + x^j)^j, {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]

A306910 Expansion of Sum_{k>=0} x^(k^2) * Product_{j=1..k} (1 + j*x^j).

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 2, 2, 0, 1, 1, 2, 5, 3, 6, 6, 1, 1, 2, 5, 7, 10, 14, 20, 12, 25, 25, 2, 5, 7, 15, 19, 30, 37, 59, 74, 71, 101, 62, 125, 127, 15, 25, 36, 49, 89, 116, 160, 214, 241, 343, 476, 449, 427, 615, 385, 763, 776, 103, 151, 209, 319, 415, 594, 818, 1068, 1234, 1725
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 16 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 67; CoefficientList[Series[Sum[x^(k^2) Product[(1 + j x^j), {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]
Previous Showing 11-16 of 16 results.