cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A309863 Number of 9-uniform hypergraphs on n unlabeled nodes.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 11, 1018997864, 3517726593606526072882013063011594224625680712384971214848
Offset: 0

Views

Author

Alois P. Heinz, Aug 20 2019

Keywords

Crossrefs

Column k=9 of A309858.

A309864 Number of 10-uniform hypergraphs on n unlabeled nodes.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 12, 165091172592, 19966339136436950669404081760311076894308447874730217071782108624195316912128
Offset: 0

Views

Author

Alois P. Heinz, Aug 20 2019

Keywords

Crossrefs

Column k=10 of A309858.

A309876 Number T(n,k) of k-uniform hypergraphs on n unlabeled nodes with at least one (possibly empty) hyperedge; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 10, 4, 1, 1, 5, 33, 33, 5, 1, 1, 6, 155, 2135, 155, 6, 1, 1, 7, 1043, 7013319, 7013319, 1043, 7, 1, 1, 8, 12345, 1788782616655, 29281354514767167, 1788782616655, 12345, 8, 1
Offset: 0

Views

Author

Peter Dolland and Alois P. Heinz, Aug 21 2019

Keywords

Comments

A hypergraph is called k-uniform if all hyperedges have the same cardinality k.
T(n,k) is defined for n,k >= 0. The triangle contains only the terms with k<=n. T(n,k) = 0 for k>n.

Examples

			T(3,0) = 1: {{}}.
T(3,1) = 3: {1}, {1,2}, {1,2,3}.
T(3,2) = 3: {12}, {12,13}, {12,13,23}.
T(3,3) = 1: {123}.
(Non-isomorphic representatives of the hypergraphs are given.)
Triangle T(n,k) begins:
  1;
  1, 1;
  1, 2,    1;
  1, 3,    3,       1;
  1, 4,   10,       4,       1;
  1, 5,   33,      33,       5,    1;
  1, 6,  155,    2135,     155,    6, 1;
  1, 7, 1043, 7013319, 7013319, 1043, 7, 1;
  ...
		

Crossrefs

Columns k=0-1 give: A000012, A001477.
Row sums give A309868.
T(2n,n) gives A328157.

Programs

  • Maple
    g:= (l, i, n)-> `if`(i=0, `if`(n=0, [[]], []), [seq(map(x->
         [x[], j], g(l, i-1, n-j))[], j=0..min(l[i], n))]):
    h:= (p, v)-> (q-> add((s-> add(`if`(andmap(i-> irem(k[i], p[i]
         /igcd(t, p[i]))=0, [$1..q]), mul((m-> binomial(m, k[i]*m
         /p[i]))(igcd(t, p[i])), i=1..q), 0), t=1..s)/s)(ilcm(seq(
        `if`(k[i]=0, 1, p[i]), i=1..q))), k=g(p, q, v)))(nops(p)):
    b:= (n, i, l, v)-> `if`(n=0 or i=1, 2^((p-> h(p, v))([l[], 1$n]))
         /n!, add(b(n-i*j, i-1, [l[], i$j], v)/j!/i^j, j=0..n/i)):
    T:= proc(n, k) option remember; `if`(k>n-k,
          T(n, n-k), b(n$2, [], k)-1)
        end:
    seq(seq(T(n, k), k=0..n), n=0..9);

Formula

T(n,k) = A309865(n,k) - 1 = A309858(n,k) - 1.
T(n,k) = T(n,n-k) for 0 <= k <= n.

A309895 Number of floor(n/2)-uniform hypergraphs on n unlabeled nodes.

Original entry on oeis.org

2, 2, 3, 4, 11, 34, 2136, 7013320, 29281354514767168, 234431745534048922731115555415680, 1994324729203114587259985605157804740271034553359179870979936357974016
Offset: 0

Views

Author

Alois P. Heinz, Aug 21 2019

Keywords

Comments

A hypergraph is called k-uniform if all hyperedges have the same cardinality k.

Crossrefs

Formula

a(n) = A309858(n,floor(n/2)) = A309865(n,floor(n/2)).
Previous Showing 11-14 of 14 results.