A309863
Number of 9-uniform hypergraphs on n unlabeled nodes.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 11, 1018997864, 3517726593606526072882013063011594224625680712384971214848
Offset: 0
A309864
Number of 10-uniform hypergraphs on n unlabeled nodes.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 12, 165091172592, 19966339136436950669404081760311076894308447874730217071782108624195316912128
Offset: 0
A309876
Number T(n,k) of k-uniform hypergraphs on n unlabeled nodes with at least one (possibly empty) hyperedge; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 10, 4, 1, 1, 5, 33, 33, 5, 1, 1, 6, 155, 2135, 155, 6, 1, 1, 7, 1043, 7013319, 7013319, 1043, 7, 1, 1, 8, 12345, 1788782616655, 29281354514767167, 1788782616655, 12345, 8, 1
Offset: 0
T(3,0) = 1: {{}}.
T(3,1) = 3: {1}, {1,2}, {1,2,3}.
T(3,2) = 3: {12}, {12,13}, {12,13,23}.
T(3,3) = 1: {123}.
(Non-isomorphic representatives of the hypergraphs are given.)
Triangle T(n,k) begins:
1;
1, 1;
1, 2, 1;
1, 3, 3, 1;
1, 4, 10, 4, 1;
1, 5, 33, 33, 5, 1;
1, 6, 155, 2135, 155, 6, 1;
1, 7, 1043, 7013319, 7013319, 1043, 7, 1;
...
-
g:= (l, i, n)-> `if`(i=0, `if`(n=0, [[]], []), [seq(map(x->
[x[], j], g(l, i-1, n-j))[], j=0..min(l[i], n))]):
h:= (p, v)-> (q-> add((s-> add(`if`(andmap(i-> irem(k[i], p[i]
/igcd(t, p[i]))=0, [$1..q]), mul((m-> binomial(m, k[i]*m
/p[i]))(igcd(t, p[i])), i=1..q), 0), t=1..s)/s)(ilcm(seq(
`if`(k[i]=0, 1, p[i]), i=1..q))), k=g(p, q, v)))(nops(p)):
b:= (n, i, l, v)-> `if`(n=0 or i=1, 2^((p-> h(p, v))([l[], 1$n]))
/n!, add(b(n-i*j, i-1, [l[], i$j], v)/j!/i^j, j=0..n/i)):
T:= proc(n, k) option remember; `if`(k>n-k,
T(n, n-k), b(n$2, [], k)-1)
end:
seq(seq(T(n, k), k=0..n), n=0..9);
A309895
Number of floor(n/2)-uniform hypergraphs on n unlabeled nodes.
Original entry on oeis.org
2, 2, 3, 4, 11, 34, 2136, 7013320, 29281354514767168, 234431745534048922731115555415680, 1994324729203114587259985605157804740271034553359179870979936357974016
Offset: 0
Comments