cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A316979 Number of strict factorizations of n into factors > 1 with no equivalent primes.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 3, 1, 3, 1, 1, 1, 5, 1, 1, 2, 3, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 5, 1, 1, 1, 3, 3, 1, 1, 7, 1, 3, 1, 3, 1, 5, 1, 5, 1, 1, 1, 6, 1, 1, 3, 4, 1, 1, 1, 3, 1, 1, 1, 9, 1, 1, 3, 3, 1, 1, 1, 7, 2, 1, 1, 6, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jul 18 2018

Keywords

Comments

In a factorization, two primes are equivalent if each factor has in its prime factorization the same multiplicity of both primes. For example, in 60 = (2*30) the primes {3, 5} are equivalent but {2, 3} and {2, 5} are not.

Examples

			The a(24) = 5 factorizations are (2*3*4), (2*12), (3*8), (4*6), (24).
The a(36) = 4 factorizations are (2*3*6), (2*18), (3*12), (4*9).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    Table[Length[Select[facs[n],And[UnsameQ@@#,UnsameQ@@dual[primeMS/@#]]&]],{n,100}]

Formula

a(prime^n) = A000009(n).

A316972 Number of connected multiset partitions of {1, 1, 2, 2, 3, 3, ..., n, n}.

Original entry on oeis.org

1, 2, 5, 28, 277, 3985, 76117, 1833187, 53756682, 1871041538, 75809298105, 3521419837339, 185235838688677, 10923147890901151, 715989783027216302, 51793686238309903860, 4109310551278549543317, 355667047514571431358297, 33422937748872646130124797
Offset: 0

Views

Author

Gus Wiseman, Jul 17 2018

Keywords

Comments

Note that all connected multiset partitions of {1, 1, 2, 2, 3, 3, ..., n, n} are strict except for (123...n)(123...n).

Examples

			The a(2) = 5 connected multiset partitions of {1, 1, 2, 2} are (1122), (1)(122), (2)(112), (12)(12), (1)(2)(12). The multiset partitions (11)(22), (1)(1)(22), (2)(2)(11), (1)(1)(2)(2) are not connected.
		

Crossrefs

Programs

  • Mathematica
    nn=10;
    ser=Exp[-3/2+Exp[x]/2]*Sum[Exp[Binomial[n+1,2]*x]/n!,{n,0,3*nn}];
    Round/@(CoefficientList[Series[1+Log[ser],{x,0,nn}],x]*Array[Factorial,nn+1,0]) (* based on Jean-François Alcover after Vladeta Jovovic *)
    (*second program *)
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Length/@Table[Select[mps[Ceiling[Range[1/2,n,1/2]]],Length[csm[#]]==1&],{n,4}]

Formula

Logarithmic transform of A020555.

A316981 Number of non-isomorphic strict multiset partitions of weight n with no equivalent vertices.

Original entry on oeis.org

1, 1, 2, 6, 15, 40, 121
Offset: 0

Views

Author

Gus Wiseman, Jul 18 2018

Keywords

Comments

Also the number of nonnegative integer n X n matrices with sum of elements equal to n, under row and column permutations, with no equal rows and no equal columns.
In a multiset partition, two vertices are equivalent if in every block the multiplicity of the first is equal to the multiplicity of the second.

Examples

			Non-isomorphic representatives of the a(3) = 6 strict multiset partitions with no equivalent vertices (first column) and their duals (second column):
      (111) <-> (111)
      (122) <-> (1)(11)
    (1)(11) <-> (122)
    (1)(22) <-> (1)(22)
    (2)(12) <-> (2)(12)
  (1)(2)(3) <-> (1)(2)(3)
		

Crossrefs

A316892 Number of non-isomorphic strict multiset partitions of {1, 1, 2, 2, 3, 3, ..., n, n} with no equivalent vertices.

Original entry on oeis.org

1, 1, 3, 9, 24, 69, 211, 654
Offset: 0

Views

Author

Gus Wiseman, Jul 18 2018

Keywords

Comments

Also the number of unlabeled graphs with n edges, allowing loops, with no equivalent vertices (two vertices are equivalent if in every edge the multiplicity of the first is equal to the multiplicity of the second). For example, non-isomorphic representatives of the a(2) = 3 multigraphs are {(1,2),(1,3)}, {(1,1),(1,2)}, {(1,1),(2,2)}.

Examples

			Non-isomorphic representatives of the a(3) = 9 strict multiset partitions:
  (112)(233)
  (1)(2)(1233)
  (1)(12)(233)
  (2)(11)(233)
  (11)(22)(33)
  (12)(13)(23)
  (1)(2)(3)(123)
  (1)(2)(12)(33)
  (1)(2)(13)(23)
		

Crossrefs

Extensions

a(6)-a(7) from Andrew Howroyd, Feb 07 2020

A316977 Number of series-reduced rooted trees whose leaves are {1, 1, 2, 2, 3, 3, ..., n, n}.

Original entry on oeis.org

1, 12, 575, 66080, 13830706, 4566898564, 2181901435364, 1422774451251512, 1213875872220833664, 1312273759143855989808, 1752860078230602866012288, 2834766624822130489716563008, 5458358420687156358967526721408, 12339106957086349462329140342122112
Offset: 1

Views

Author

Gus Wiseman, Jul 17 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches.

Examples

			The a(2) = 12 trees are (1(1(22))), (1(2(12))), (1(122)), (2(1(12))), (2(2(11))), (2(112)), ((11)(22)), ((12)(12)), (11(22)), (12(12)), (22(11)), (1122).
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    gro[m_]:=If[Length[m]==1,m,Union[Sort/@Join@@(Tuples[gro/@#]&/@Select[mps[m],Length[#]>1&])]];
    Table[Length[gro[Ceiling[Range[1/2,n,1/2]]]],{n,4}]
  • PARI
    \\ See links in A339645 for combinatorial species functions.
    cycleIndexSeries(n)={my(v=vector(2*n), vars=vector(2*n-2,i,sv(2+i))); v[1]=sv(1); for(n=2, #v, v[n] = substvec(polcoef( sExp(x*Ser(v[1..n])), n ), vars[1..n-2], vector(n-2))); sCartProd(x*Ser(v), 1/(1-x^2*symGroupCycleIndex(2)) + O(x*x^(2*n)))}
    seq(n)={my(p=substvec(cycleIndexSeries(n), [sv(1), sv(2)], [1,1])); vector(n, n, polcoef(p,2*n))} \\ Andrew Howroyd, Jan 02 2021

Formula

a(n) = A292505(A061742(n)). - Andrew Howroyd, Nov 19 2018

Extensions

Terms a(6) and beyond from Andrew Howroyd, Jan 02 2021
Previous Showing 11-15 of 15 results.