cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A316980 Number of non-isomorphic strict multiset partitions of weight n.

Original entry on oeis.org

1, 1, 3, 8, 23, 63, 197, 588, 1892, 6140, 20734, 71472, 254090, 923900, 3446572, 13149295, 51316445, 204556612, 832467052, 3455533022, 14621598811, 63023667027, 276559371189, 1234802595648, 5606647482646, 25875459311317, 121324797470067, 577692044073205
Offset: 0

Views

Author

Gus Wiseman, Jul 18 2018

Keywords

Comments

Also the number of nonnegative integer n X n matrices with sum of elements equal to n, under row and column permutations, with no equal rows (or alternatively, with no equal columns).
Also the number of non-isomorphic multiset partitions of weight n with no equivalent vertices. In a multiset partition, two vertices are equivalent if in every block the multiplicity of the first is equal to the multiplicity of the second.

Examples

			Non-isomorphic representatives of the a(3) = 8 multiset partitions with no equivalent vertices (first column) and with no equal blocks (second column):
      (111) <-> (111)
      (122) <-> (1)(11)
    (1)(11) <-> (122)
    (1)(22) <-> (1)(22)
    (2)(12) <-> (2)(12)
  (1)(1)(1) <-> (123)
  (1)(2)(2) <-> (1)(23)
  (1)(2)(3) <-> (1)(2)(3)
		

Crossrefs

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={EulerT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k))}
    a(n)={if(n==0, 1, my(s=0); forpart(q=n, my(p=sum(t=1, n, subst(x*Ser(K(q, t, n\t))/t, x, x^t))); s+=permcount(q)*polcoef(exp(p-subst(p,x,x^2)), n)); s/n!)} \\ Andrew Howroyd, Jan 21 2023

Formula

Euler transform of A319557. - Gus Wiseman, Sep 23 2018

Extensions

a(7)-a(10) from Gus Wiseman, Sep 23 2018
Terms a(11) and beyond from Andrew Howroyd, Jan 19 2023

A316983 Number of non-isomorphic self-dual multiset partitions of weight n.

Original entry on oeis.org

1, 1, 2, 4, 9, 17, 36, 72, 155, 319, 677, 1429, 3094, 6648, 14518, 31796, 70491, 156818, 352371, 795952, 1813580, 4155367, 9594425, 22283566, 52122379, 122631874, 290432439, 691831161, 1658270316, 3997272089, 9692519896, 23631827354, 57943821449, 142834652193
Offset: 0

Views

Author

Gus Wiseman, Jul 18 2018

Keywords

Comments

Also the number of nonnegative integer square symmetric matrices with sum of elements equal to n, under row and column permutations.
The dual of a multiset partition has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex, counted with multiplicity.

Examples

			Non-isomorphic representatives of the a(4) = 9 self-dual multiset partitions:
  (1111),
  (1)(222), (2)(122), (11)(22), (12)(12),
  (1)(1)(23), (1)(2)(33), (1)(3)(23),
  (1)(2)(3)(4).
The a(4) = 9 square symmetric matrices:
. [4]
.
. [3 0]  [2 0]  [2 1]  [1 1]
. [0 1]  [0 2]  [1 0]  [1 1]
.
. [2 0 0]  [1 1 0]  [0 1 1]
. [0 1 0]  [1 0 0]  [1 0 0]
. [0 0 1]  [0 0 1]  [1 0 0]
.
. [1 0 0 0]
. [0 1 0 0]
. [0 0 1 0]
. [0 0 0 1]
		

Crossrefs

Row sums of A320796.
Main diagonal of A318805.

Programs

Extensions

Terms a(9) and beyond from Andrew Howroyd, Sep 03 2018

A319056 Number of non-isomorphic multiset partitions of weight n in which (1) all parts have the same size and (2) each vertex appears the same number of times.

Original entry on oeis.org

1, 1, 4, 4, 10, 4, 21, 4, 26, 13, 28, 4, 128, 4, 39, 84, 150, 4, 358, 4, 956, 513, 86, 4, 12549, 1864, 134, 9582, 52366, 4, 301086, 4, 1042038, 407140, 336, 4690369, 61738312, 4, 532, 28011397, 2674943885, 4, 819150246, 4, 54904825372, 65666759973, 1303, 4, 4319823776760
Offset: 0

Views

Author

Gus Wiseman, Oct 10 2018

Keywords

Comments

a(p) = 4 for p prime. - Charlie Neder, Oct 15 2018

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(6) = 21 multiset partitions:
  (1)  (11)    (111)      (1111)        (11111)          (111111)
       (12)    (123)      (1122)        (12345)          (111222)
       (1)(1)  (1)(1)(1)  (1234)        (1)(1)(1)(1)(1)  (112233)
       (1)(2)  (1)(2)(3)  (11)(11)      (1)(2)(3)(4)(5)  (123456)
                          (11)(22)                       (111)(111)
                          (12)(12)                       (111)(222)
                          (12)(34)                       (112)(122)
                          (1)(1)(1)(1)                   (112)(233)
                          (1)(1)(2)(2)                   (123)(123)
                          (1)(2)(3)(4)                   (123)(456)
                                                         (11)(11)(11)
                                                         (11)(12)(22)
                                                         (11)(22)(33)
                                                         (11)(23)(23)
                                                         (12)(12)(12)
                                                         (12)(13)(23)
                                                         (12)(34)(56)
                                                         (1)(1)(1)(1)(1)(1)
                                                         (1)(1)(1)(2)(2)(2)
                                                         (1)(1)(2)(2)(3)(3)
                                                         (1)(2)(3)(4)(5)(6)
		

Crossrefs

Extensions

Terms a(12) and beyond from Andrew Howroyd, Feb 03 2022

A316978 Number of factorizations of n into factors > 1 with no equivalent primes.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 4, 1, 1, 1, 5, 1, 4, 1, 4, 1, 1, 1, 7, 2, 1, 3, 4, 1, 1, 1, 7, 1, 1, 1, 7, 1, 1, 1, 7, 1, 1, 1, 4, 4, 1, 1, 12, 2, 4, 1, 4, 1, 7, 1, 7, 1, 1, 1, 7, 1, 1, 4, 11, 1, 1, 1, 4, 1, 1, 1, 16, 1, 1, 4, 4, 1, 1, 1, 12, 5, 1, 1, 7, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jul 18 2018

Keywords

Comments

In a factorization, two primes are equivalent if each factor has in its prime factorization the same multiplicity of both primes.

Examples

			The a(36) = 7 factorizations are (2*2*3*3), (2*2*9), (2*3*6), (3*3*4), (2*18), (3*12), (4*9). Missing from this list are (6*6) and (36).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    Table[Length[Select[facs[n],UnsameQ@@dual[primeMS/@#]&]],{n,100}]

Formula

a(prime^n) = A000041(n).
a(squarefree) = 1.

A316979 Number of strict factorizations of n into factors > 1 with no equivalent primes.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 3, 1, 3, 1, 1, 1, 5, 1, 1, 2, 3, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 5, 1, 1, 1, 3, 3, 1, 1, 7, 1, 3, 1, 3, 1, 5, 1, 5, 1, 1, 1, 6, 1, 1, 3, 4, 1, 1, 1, 3, 1, 1, 1, 9, 1, 1, 3, 3, 1, 1, 1, 7, 2, 1, 1, 6, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jul 18 2018

Keywords

Comments

In a factorization, two primes are equivalent if each factor has in its prime factorization the same multiplicity of both primes. For example, in 60 = (2*30) the primes {3, 5} are equivalent but {2, 3} and {2, 5} are not.

Examples

			The a(24) = 5 factorizations are (2*3*4), (2*12), (3*8), (4*6), (24).
The a(36) = 4 factorizations are (2*3*6), (2*18), (3*12), (4*9).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    Table[Length[Select[facs[n],And[UnsameQ@@#,UnsameQ@@dual[primeMS/@#]]&]],{n,100}]

Formula

a(prime^n) = A000009(n).
Showing 1-5 of 5 results.