cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 29 results. Next

A316980 Number of non-isomorphic strict multiset partitions of weight n.

Original entry on oeis.org

1, 1, 3, 8, 23, 63, 197, 588, 1892, 6140, 20734, 71472, 254090, 923900, 3446572, 13149295, 51316445, 204556612, 832467052, 3455533022, 14621598811, 63023667027, 276559371189, 1234802595648, 5606647482646, 25875459311317, 121324797470067, 577692044073205
Offset: 0

Views

Author

Gus Wiseman, Jul 18 2018

Keywords

Comments

Also the number of nonnegative integer n X n matrices with sum of elements equal to n, under row and column permutations, with no equal rows (or alternatively, with no equal columns).
Also the number of non-isomorphic multiset partitions of weight n with no equivalent vertices. In a multiset partition, two vertices are equivalent if in every block the multiplicity of the first is equal to the multiplicity of the second.

Examples

			Non-isomorphic representatives of the a(3) = 8 multiset partitions with no equivalent vertices (first column) and with no equal blocks (second column):
      (111) <-> (111)
      (122) <-> (1)(11)
    (1)(11) <-> (122)
    (1)(22) <-> (1)(22)
    (2)(12) <-> (2)(12)
  (1)(1)(1) <-> (123)
  (1)(2)(2) <-> (1)(23)
  (1)(2)(3) <-> (1)(2)(3)
		

Crossrefs

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={EulerT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k))}
    a(n)={if(n==0, 1, my(s=0); forpart(q=n, my(p=sum(t=1, n, subst(x*Ser(K(q, t, n\t))/t, x, x^t))); s+=permcount(q)*polcoef(exp(p-subst(p,x,x^2)), n)); s/n!)} \\ Andrew Howroyd, Jan 21 2023

Formula

Euler transform of A319557. - Gus Wiseman, Sep 23 2018

Extensions

a(7)-a(10) from Gus Wiseman, Sep 23 2018
Terms a(11) and beyond from Andrew Howroyd, Jan 19 2023

A316983 Number of non-isomorphic self-dual multiset partitions of weight n.

Original entry on oeis.org

1, 1, 2, 4, 9, 17, 36, 72, 155, 319, 677, 1429, 3094, 6648, 14518, 31796, 70491, 156818, 352371, 795952, 1813580, 4155367, 9594425, 22283566, 52122379, 122631874, 290432439, 691831161, 1658270316, 3997272089, 9692519896, 23631827354, 57943821449, 142834652193
Offset: 0

Views

Author

Gus Wiseman, Jul 18 2018

Keywords

Comments

Also the number of nonnegative integer square symmetric matrices with sum of elements equal to n, under row and column permutations.
The dual of a multiset partition has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex, counted with multiplicity.

Examples

			Non-isomorphic representatives of the a(4) = 9 self-dual multiset partitions:
  (1111),
  (1)(222), (2)(122), (11)(22), (12)(12),
  (1)(1)(23), (1)(2)(33), (1)(3)(23),
  (1)(2)(3)(4).
The a(4) = 9 square symmetric matrices:
. [4]
.
. [3 0]  [2 0]  [2 1]  [1 1]
. [0 1]  [0 2]  [1 0]  [1 1]
.
. [2 0 0]  [1 1 0]  [0 1 1]
. [0 1 0]  [1 0 0]  [1 0 0]
. [0 0 1]  [0 0 1]  [1 0 0]
.
. [1 0 0 0]
. [0 1 0 0]
. [0 0 1 0]
. [0 0 0 1]
		

Crossrefs

Row sums of A320796.
Main diagonal of A318805.

Programs

Extensions

Terms a(9) and beyond from Andrew Howroyd, Sep 03 2018

A059201 Number of T_0-covers of a labeled n-set.

Original entry on oeis.org

1, 1, 4, 96, 31692, 2147001636, 9223371991763269704, 170141183460469231473432887375376674952, 57896044618658097711785492504343953920509909728243389682424010192567186540224
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Jan 16 2001

Keywords

Comments

A cover of a set is a T_0-cover if for every two distinct points of the set there exists a member (block) of the cover containing one but not the other point.
From Gus Wiseman, Aug 13 2019: (Start)
A set-system is a finite set of finite nonempty sets. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. The T_0 condition means that the dual is strict (no repeated edges). For example, the a(2) = 4 covers are:
{{1},{2}}
{{1},{1,2}}
{{2},{1,2}}
{{1},{2},{1,2}}
(End)

Crossrefs

Row sums of A059202.
Covering set-systems are A003465.
The unlabeled version is A319637.
The version with empty edges allowed is A326939.
The non-covering version is A326940.
BII-numbers of T_0 set-systems are A326947.
The same with connected instead of covering is A326948.
The T_1 version is A326961.

Programs

  • Mathematica
    Table[Sum[StirlingS1[n + 1, k]*2^(2^(k - 1) - 1), {k, 0, n + 1}], {n,0,5}] (* G. C. Greubel, Dec 28 2016 *)
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&UnsameQ@@dual[#]&]],{n,0,3}] (* Gus Wiseman, Aug 13 2019 *)

Formula

a(n) = Sum_{i=0..n+1} stirling1(n+1, i)*2^(2^(i-1)-1).
a(n) = Sum_{m=0..2^n-1} A059202(n,m).
Inverse binomial transform of A326940 and exponential transform of A326948. - Gus Wiseman, Aug 13 2019

A001035 Number of partially ordered sets ("posets") with n labeled elements (or labeled acyclic transitive digraphs).

Original entry on oeis.org

1, 1, 3, 19, 219, 4231, 130023, 6129859, 431723379, 44511042511, 6611065248783, 1396281677105899, 414864951055853499, 171850728381587059351, 98484324257128207032183, 77567171020440688353049939, 83480529785490157813844256579, 122152541250295322862941281269151, 241939392597201176602897820148085023
Offset: 0

Views

Author

Keywords

Comments

From Altug Alkan, Dec 22 2015: (Start)
a(p^k) == 1 (mod p) and a(n + p) == a(n + 1) (mod p) for all primes p.
a(0+19) == a(0+1) (mod 19) or a(19^1) == 1 (mod 19), that is, a(19) mod 19 = 1.
a(2+17) == a(2+1) (mod 17). So a(19) == 19 (mod 17), that is, a(19) mod 17 = 2.
a(6+13) == a(6+1) (mod 13). So a(19) == 6129859 (mod 13), that is, a(19) mod 13 = 8.
a(8+11) == a(8+1) (mod 11). So a(19) == 44511042511 (mod 11), that is, a(19) mod 11 = 1.
a(12+7) == a(12+1) (mod 7). So a(19) == 171850728381587059351 (mod 7), that is, a(19) mod 7 = 1.
a(14+5) == a(14+1) (mod 5). So a(19) == 77567171020440688353049939 (mod 5), that is, a(19) mod 5 = 4.
a(16+3) == a(16+1) (mod 3). So a(19) == 122152541250295322862941281269151 (mod 3), that is, a(19) mod 3 = 1.
a(17+2) == a(17+1) (mod 2). So a(19) mod 2 = 1.
In conclusion, a(19) is a number of the form 2*3*5*7*11*13*17*19*n - 1615151, that is, 9699690*n - 1615151.
Additionally, for n > 0, note that the last digit of a(n) has the simple periodic pattern: 1,3,9,9,1,3,9,9,1,3,9,9,...
(End)
Number of rank n sublattices of the Boolean algebra B_n. - Kevin Long, Nov 20 2018
a(n) is the number of n X n idempotent Boolean relation matrices (A121337) that have rank n. - Geoffrey Critzer, Aug 16 2023
a(19) == 163279579 (mod 232792560). - Didier Garcia, Feb 06 2025

Examples

			R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, Chap. 3, page 98, Fig. 3-1 shows the unlabeled posets with <= 4 points.
From _Gus Wiseman_, Aug 14 2019: (Start)
Also the number of T_0 topologies with n points. For example, the a(0) = 1 through a(3) = 19 topologies are:
  {}  {}{1}  {}{1}{12}     {}{1}{12}{123}
             {}{2}{12}     {}{1}{13}{123}
             {}{1}{2}{12}  {}{2}{12}{123}
                           {}{2}{23}{123}
                           {}{3}{13}{123}
                           {}{3}{23}{123}
                           {}{1}{2}{12}{123}
                           {}{1}{3}{13}{123}
                           {}{2}{3}{23}{123}
                           {}{1}{12}{13}{123}
                           {}{2}{12}{23}{123}
                           {}{3}{13}{23}{123}
                           {}{1}{2}{12}{13}{123}
                           {}{1}{2}{12}{23}{123}
                           {}{1}{3}{12}{13}{123}
                           {}{1}{3}{13}{23}{123}
                           {}{2}{3}{12}{23}{123}
                           {}{2}{3}{13}{23}{123}
                           {}{1}{2}{3}{12}{13}{23}{123}
(End)
		

References

  • G. Birkhoff, Lattice Theory, Amer. Math. Soc., 1961, p. 4.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 427.
  • K. K.-H. Butler, A Moore-Penrose inverse for Boolean relation matrices, pp. 18-28 of Combinatorial Mathematics (Proceedings 2nd Australian Conf.), Lect. Notes Math. 403, 1974.
  • K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184.
  • K. K. H. Butler and G. Markowsky. "The number of partially ordered sets. I." Journal of Korean Mathematical Society 11.1 (1974).
  • S. D. Chatterji, The number of topologies on n points, Manuscript, 1966.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 60, 229.
  • M. Erné, Struktur- und Anzahlformeln für Topologien auf endlichen Mengen, PhD dissertation, Westfälische Wilhelms-Universität zu Münster, 1972.
  • M. Erné and K. Stege, The number of labeled orders on fifteen elements, personal communication.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, Chap. 3, pages 96ff; Vol. 2, Problem 5.39, p. 88.

Crossrefs

Cf. A000798 (labeled topologies), A001930 (unlabeled topologies), A000112 (unlabeled posets), A006057.
Sequences in the Erné (1974) paper: A000798, A001035, A006056, A006057, A001929, A001927, A006058, A006059, A000110.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    Table[Length[Select[Subsets[Subsets[Range[n]]],MemberQ[#,{}]&&MemberQ[#,Range[n]]&&UnsameQ@@dual[#]&&SubsetQ[#,Union@@@Tuples[#,2]]&&SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}] (* Gus Wiseman, Aug 14 2019 *)

Formula

A000798(n) = Sum_{k=0..n} Stirling2(n,k)*a(k).
Related to A000112 by Erné's formulas: a(n+1) = -s(n, 1), a(n+2) = n*a(n+1) + s(n, 2), a(n+3) = binomial(n+4, 2)*a(n+2) - s(n, 3), where s(n, k) = sum(binomial(n+k-1-m, k-1)*binomial(n+k, m)*sum((m!)/(number of automorphisms of P)*(-(number of antichains of P))^k, P an unlabeled poset with m elements), m=0..n).
From Altug Alkan, Dec 22 2015: (Start)
a(p^k) == 1 (mod p) for all primes p and for all nonnegative integers k.
a(n + p) == a(n + 1) (mod p) for all primes p and for all nonnegative integers n.
If n = 1, then a(1 + p) == a(2) (mod p), that is, a(p + 1) == 3 (mod p).
If n = p, then a(p + p) == a(p + 1) (mod p), that is, a(2*p) == a(p + 1) (mod p).
In conclusion, a(2*p) == 3 (mod p) for all primes p.
(End)
a(n) = Sum_{k=0..n} Stirling1(n,k)*A000798(k). - Tian Vlasic, Feb 25 2022

Extensions

a(15)-a(16) from Jobst Heitzig (heitzig(AT)math.uni-hannover.de), Jul 03 2000
a(17)-a(18) from Herman Jamke (hermanjamke(AT)fastmail.fm), Mar 02 2008

A000112 Number of partially ordered sets ("posets") with n unlabeled elements.

Original entry on oeis.org

1, 1, 2, 5, 16, 63, 318, 2045, 16999, 183231, 2567284, 46749427, 1104891746, 33823827452, 1338193159771, 68275077901156, 4483130665195087
Offset: 0

Views

Author

Keywords

Comments

Also number of fixed effects ANOVA models with n factors, which may be both crossed and nested.

Examples

			R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, Chap. 3, page 98, Fig. 3-1 (or 2nd. ed., Fig. 3.1, p. 243) shows the unlabeled posets with <= 4 points.
From _Gus Wiseman_, Aug 14 2019: (Start)
Also the number of unlabeled T_0 topologies with n points. For example, non-isomorphic representatives of the a(4) = 16 topologies are:
  {}{1}{12}{123}{1234}
  {}{1}{2}{12}{123}{1234}
  {}{1}{12}{13}{123}{1234}
  {}{1}{12}{123}{124}{1234}
  {}{1}{2}{12}{13}{123}{1234}
  {}{1}{2}{12}{123}{124}{1234}
  {}{1}{12}{13}{123}{124}{1234}
  {}{1}{2}{12}{13}{123}{124}{1234}
  {}{1}{2}{12}{13}{123}{134}{1234}
  {}{1}{2}{3}{12}{13}{23}{123}{1234}
  {}{1}{2}{12}{13}{24}{123}{124}{1234}
  {}{1}{12}{13}{14}{123}{124}{134}{1234}
  {}{1}{2}{3}{12}{13}{23}{123}{124}{1234}
  {}{1}{2}{12}{13}{14}{123}{124}{134}{1234}
  {}{1}{2}{3}{12}{13}{14}{23}{123}{124}{134}{1234}
  {}{1}{2}{3}{4}{12}{13}{14}{23}{24}{34}{123}{124}{134}{234}{1234}
(End)
		

References

  • G. Birkhoff, Lattice Theory, 1961, p. 4.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 60.
  • E. D. Cooper, Representation and generation of finite partially ordered sets, Manuscript, no date.
  • J. L. Davison, Asymptotic enumeration of partial orders. Proceedings of the seventeenth Southeastern international conference on combinatorics, graph theory, and computing (Boca Raton, Fla., 1986). Congr. Numer. 53 (1986), 277--286. MR0885256 (88c:06001)
  • E. N. Gilbert, A catalog of partially ordered systems, unpublished memorandum, Aug 08, 1961.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, Chap. 3, pages 96ff; Vol. I, 2nd. ed., Chap. 3, pp. 241ff; Vol. 2, Problem 5.39, p. 88.
  • For further references concerning the enumeration of topologies and posets see under A001035.

Crossrefs

Cf. A000798 (labeled topologies), A001035 (labeled posets), A001930 (unlabeled topologies), A006057.
Cf. A079263, A079265, A065066 (refined by maximal elements), A342447 (refined by number of arcs).
Row sums of A263859. Euler transform of A000608.

Extensions

a(15)-a(16) are from Brinkmann's and McKay's paper. - Vladeta Jovovic, Jan 04 2006

A319564 Number of T_0 integer partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 10, 14, 21, 29, 40, 53, 73, 95, 128, 168, 221, 282, 368, 466, 599, 759, 962, 1201, 1513, 1881, 2345, 2901, 3590, 4407, 5416, 6614, 8083, 9827, 11937, 14442, 17458, 21021, 25299, 30347, 36363, 43438, 51843, 61705, 73384, 87054, 103149, 121949
Offset: 0

Views

Author

Gus Wiseman, Sep 23 2018

Keywords

Comments

The dual of a multiset partition has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}. For an integer partition the T_0 condition means the dual of the multiset partition obtained by factoring each part into prime numbers is strict (no repeated blocks).
Also the number of integer partitions of n with no equivalent primes. In an integer partition, two primes are equivalent if each part has in its prime factorization the same multiplicity of both primes. For example, in (6,5) the primes {2,3} are equivalent. See A316978 for more examples.

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}]
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@dual[primeMS/@#]&]],{n,20}]

A326947 BII-numbers of T_0 set-systems.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 67, 69, 70, 71, 73, 74, 75, 77, 78
Offset: 1

Views

Author

Gus Wiseman, Aug 08 2019

Keywords

Comments

The dual of a set-system has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. The T_0 condition means that the dual is strict (no repeated edges).
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.

Examples

			The sequence of all T_0 set-systems together with their BII numbers begins:
   0: {}
   1: {{1}}
   2: {{2}}
   3: {{1},{2}}
   5: {{1},{1,2}}
   6: {{2},{1,2}}
   7: {{1},{2},{1,2}}
   8: {{3}}
   9: {{1},{3}}
  10: {{2},{3}}
  11: {{1},{2},{3}}
  13: {{1},{1,2},{3}}
  14: {{2},{1,2},{3}}
  15: {{1},{2},{1,2},{3}}
  17: {{1},{1,3}}
  19: {{1},{2},{1,3}}
  20: {{1,2},{1,3}}
  21: {{1},{1,2},{1,3}}
  22: {{2},{1,2},{1,3}}
  23: {{1},{2},{1,2},{1,3}}
		

Crossrefs

T_0 set-systems are counted by A326940, with unlabeled version A326946.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    TZQ[sys_]:=UnsameQ@@dual[sys];
    Select[Range[0,100],TZQ[bpe/@bpe[#]]&]
  • Python
    from itertools import count, chain, islice
    def bin_i(n): #binary indices
        return([(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1'])
    def a_gen():
        for n in count(0):
            a,b,s = [bin_i(k) for k in bin_i(n)],[],set()
            for i in {i for i in chain.from_iterable(a)}:
                b.append([])
                for j in range(len(a)):
                    if i in a[j]:
                        b[-1].append(j)
                s.add(tuple(b[-1]))
            if len(s) == len(b):
                yield n
    A326947_list = list(islice(a_gen(), 100)) # John Tyler Rascoe, Jul 25 2024

A326946 Number of unlabeled T_0 set-systems on n vertices.

Original entry on oeis.org

1, 2, 5, 34, 1919, 18660178
Offset: 0

Views

Author

Gus Wiseman, Aug 08 2019

Keywords

Comments

The dual of a multiset partition has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. The T_0 condition means that the dual is strict (no repeated edges).

Examples

			Non-isomorphic representatives of the a(0) = 1 through a(2) = 5 set-systems:
  {}  {}     {}
      {{1}}  {{1}}
             {{1},{2}}
             {{2},{1,2}}
             {{1},{2},{1,2}}
		

Crossrefs

The non-T_0 version is A000612.
The antichain case is A245567.
The covering case is A319637.
The labeled version is A326940.
The version with empty edges allowed is A326949.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    Table[Length[Union[normclut/@Select[Subsets[Subsets[Range[n],{1,n}]],UnsameQ@@dual[#]&]]],{n,0,3}]

Formula

Partial sums of A319637.
a(n) = A326949(n)/2.

Extensions

a(5) from Max Alekseyev, Oct 11 2023

A326940 Number of T_0 set-systems on n vertices.

Original entry on oeis.org

1, 2, 7, 112, 32105, 2147161102, 9223372004645756887, 170141183460469231537996491362807709908, 57896044618658097711785492504343953921871039195927143534469727707459805807105
Offset: 0

Views

Author

Gus Wiseman, Aug 07 2019

Keywords

Comments

The dual of a multiset partition has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. The T_0 condition means that the dual is strict (no repeated edges).

Examples

			The a(0) = 1 through a(2) = 7 set-systems:
  {}  {}     {}
      {{1}}  {{1}}
             {{2}}
             {{1},{2}}
             {{1},{1,2}}
             {{2},{1,2}}
             {{1},{2},{1,2}}
		

Crossrefs

The non-T_0 version is A058891 shifted to the left.
The covering case is A059201.
The version with empty edges is A326941.
The unlabeled version is A326946.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],UnsameQ@@dual[#]&]],{n,0,3}]

Formula

Binomial transform of A059201.

A326939 Number of T_0 sets of subsets of {1..n} that cover all n vertices.

Original entry on oeis.org

2, 2, 8, 192, 63384, 4294003272, 18446743983526539408, 340282366920938462946865774750753349904, 115792089237316195423570985008687907841019819456486779364848020385134373080448
Offset: 0

Views

Author

Gus Wiseman, Aug 07 2019

Keywords

Comments

The dual of a multiset partition has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. The T_0 condition means that the dual is strict (no repeated edges).

Examples

			The a(0) = 2 through a(2) = 8 sets of subsets:
  {}    {{1}}     {{1},{2}}
  {{}}  {{},{1}}  {{1},{1,2}}
                  {{2},{1,2}}
                  {{},{1},{2}}
                  {{},{1},{1,2}}
                  {{},{2},{1,2}}
                  {{1},{2},{1,2}}
                  {{},{1},{2},{1,2}}
		

Crossrefs

The non-T_0 version is A000371.
The case without empty edges is A059201.
The non-covering version is A326941.
The unlabeled version is A326942.
The case closed under intersection is A326943.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    Table[Length[Select[Subsets[Subsets[Range[n]]],Union@@#==Range[n]&&UnsameQ@@dual[#]&]],{n,0,3}]

Formula

a(n) = 2 * A059201(n).
Inverse binomial transform of A326941.
Showing 1-10 of 29 results. Next