A317590
Heinz numbers of integer partitions that are not uniformly normal.
Original entry on oeis.org
10, 14, 15, 20, 21, 22, 24, 26, 28, 33, 34, 35, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 62, 63, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110
Offset: 1
Sequence of all non-uniformly normal integer partitions begins: (31), (41), (32), (311), (42), (51), (2111), (61), (411), (52), (71), (43), (81), (62), (3111), (421), (511), (322), (91), (21111), (331).
Cf.
A055932,
A056239,
A181819,
A182850,
A296150,
A304687,
A304818,
A317089,
A317090,
A317245,
A317246,
A317493,
A317588,
A317589.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
uninrmQ[q_]:=Or[q=={}||Length[Union[q]]==1,And[Union[q]==Range[Max[q]],uninrmQ[Sort[Length/@Split[q],Greater]]]];
Select[Range[1000],!uninrmQ[primeMS[#]]&]
A325331
Number of integer partitions of n whose multiplicities appear with distinct multiplicities that cover an initial interval of positive integers.
Original entry on oeis.org
1, 1, 2, 2, 3, 2, 4, 3, 7, 10, 14, 18, 30, 34, 44, 65, 73, 88, 110, 127, 155, 183, 202, 231, 277, 301, 339, 382, 430, 461, 551, 579, 681, 762, 896, 1010, 1255, 1406, 1752, 2061, 2555, 3001, 3783, 4437, 5512, 6611, 8056, 9539, 11668, 13692, 16515, 19435, 23098
Offset: 0
The a(0) = 1 through a(8) = 7 partitions:
() (1) (2) (3) (4) (5) (6) (7) (8)
(11) (111) (22) (11111) (33) (3211) (44)
(1111) (222) (1111111) (2222)
(111111) (3221)
(4211)
(32111)
(11111111)
For example, the partition p = (5,5,4,3,3,3,2,2) has multiplicities (2,3,1,2), which appear with multiplicities (1,2,1), which cover an initial interval but are not distinct, so p is not counted under a(27). The partition q = (5,5,5,4,4,4,3,3,2,2,1,1) has multiplicities (3,3,2,2,2), which appear with multiplicities (3,2), which are distinct but do not cover an initial interval, so q is not counted under a(39). The partition r = (3,3,2,1,1) has multiplicities (2,1,2), which appear with multiplicities (1,2), which are distinct and cover an initial interval, so r is counted under a(10).
Cf.
A098859,
A130091,
A317081,
A317090,
A320348,
A325329,
A325330,
A325337,
A325369,
A325370,
A325371.
-
normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
Table[Length[Select[IntegerPartitions[n],normQ[Length/@Split[Sort[Length/@Split[#]]]]&&UnsameQ@@Length/@Split[Sort[Length/@Split[#]]]&]],{n,0,30}]
A325371
Numbers whose prime signature has multiplicities of its parts all distinct and covering an initial interval of positive integers.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 60, 61, 64, 67, 71, 73, 79, 81, 83, 84, 89, 90, 97, 101, 103, 107, 109, 113, 120, 121, 125, 126, 127, 128, 131, 132, 137, 139, 140, 149, 150, 151, 156, 157, 163
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
3: {2}
4: {1,1}
5: {3}
7: {4}
8: {1,1,1}
9: {2,2}
11: {5}
13: {6}
16: {1,1,1,1}
17: {7}
19: {8}
23: {9}
25: {3,3}
27: {2,2,2}
29: {10}
31: {11}
32: {1,1,1,1,1}
37: {12}
Cf.
A055932,
A056239,
A098859,
A112798,
A118914,
A130091,
A317090,
A325329,
A325330,
A325331,
A325337,
A325369,
A325370.
A325372
Totally abnormal numbers. Heinz numbers of totally abnormal integer partitions.
Original entry on oeis.org
3, 5, 7, 9, 11, 13, 17, 19, 23, 25, 27, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 81, 83, 89, 97, 100, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 196, 197, 199, 211, 223, 225, 227
Offset: 1
The sequence of terms together with their prime indices are the following. See also the example at A325373.
3: {2}
5: {3}
7: {4}
9: {2,2}
11: {5}
13: {6}
17: {7}
19: {8}
23: {9}
25: {3,3}
27: {2,2,2}
29: {10}
31: {11}
37: {12}
41: {13}
43: {14}
47: {15}
49: {4,4}
53: {16}
59: {17}
Cf.
A055932,
A056239,
A112798,
A181819,
A317089,
A317090,
A317246 (supernormal),
A317492 (fully normal),
A317589 (uniformly normal),
A319151,
A325332,
A325373.
-
normQ[n_Integer]:=Or[n==1,PrimePi/@First/@FactorInteger[n]==Range[PrimeNu[n]]];
totabnQ[n_]:=And[!normQ[n],PrimeQ[n]||totabnQ[Times@@Prime/@Last/@If[n==1,{},FactorInteger[n]]]];
Select[Range[100],totabnQ]
A317082
Number of integer partitions of n whose multiplicities are weakly decreasing and span an initial interval of positive integers.
Original entry on oeis.org
1, 1, 1, 2, 3, 4, 5, 8, 9, 13, 17, 22, 26, 35, 42, 53, 66, 81, 96, 122, 143, 174, 210, 251, 293, 358, 417, 493, 582, 686, 793, 941, 1087, 1267, 1471, 1709, 1961, 2285, 2615, 3013, 3460, 3976, 4523, 5204, 5914, 6747, 7681, 8745, 9884, 11262, 12714, 14393, 16261
Offset: 0
The a(7) = 8 integer partitions are (7), (61), (52), (511), (43), (421), (322), (3211).
-
normalQ[m_]:=Union[m]==Range[Max[m]];
Table[Length[Select[IntegerPartitions[n],And[normalQ[Length/@Split[#]],OrderedQ[Length/@Split[#]]]&]],{n,60}]
A317493
Heinz numbers of integer partitions that are not fully normal.
Original entry on oeis.org
9, 24, 25, 27, 36, 40, 48, 49, 54, 56, 72, 80, 81, 88, 96, 100, 104, 108, 112, 120, 121, 125, 135, 136, 144, 152, 160, 162, 168, 169, 176, 184, 189, 192, 196, 200, 208, 216, 224, 225, 232, 240, 243, 248, 250, 264, 270, 272, 280, 288, 289, 296, 297, 304, 312
Offset: 1
Sequence of all integer partitions that are not fully normal begins: (22), (2111), (33), (222), (2211), (3111), (21111), (44), (2221), (4111), (22111), (31111), (2222), (5111), (211111), (3311).
Cf.
A055932,
A056239,
A181819,
A182850,
A296150,
A305733,
A317089,
A317090,
A317245,
A317246,
A317491,
A317492.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
fulnrmQ[ptn_]:=With[{qtn=Sort[Length/@Split[ptn],Greater]},Or[ptn=={}||Union[ptn]=={1},And[Union[qtn]==Range[Max[qtn]],fulnrmQ[qtn]]]];
Select[Range[100],!fulnrmQ[Reverse[primeMS[#]]]&]
A381632
Numbers such that (greatest prime exponent) = (sum of distinct prime indices).
Original entry on oeis.org
2, 9, 24, 54, 72, 80, 108, 125, 216, 224, 400, 704, 960, 1215, 1250, 1568, 1664, 2000, 2401, 2500, 2688, 2880, 4352, 4800, 5000, 5103, 6075, 7290, 7744, 8064, 8448, 8640, 8960, 9375, 9728, 10000, 10976, 14400, 14580, 18816, 19968, 21632, 23552, 24000, 24057
Offset: 1
The terms together with their prime indices begin:
2: {1}
9: {2,2}
24: {1,1,1,2}
54: {1,2,2,2}
72: {1,1,1,2,2}
80: {1,1,1,1,3}
108: {1,1,2,2,2}
125: {3,3,3}
216: {1,1,1,2,2,2}
224: {1,1,1,1,1,4}
400: {1,1,1,1,3,3}
704: {1,1,1,1,1,1,5}
960: {1,1,1,1,1,1,2,3}
For (length) instead of (sum of distinct) we have
A000961.
Including number of parts gives
A062457 (degenerate).
Partitions of this type are counted by
A381079.
A239964 counts partitions with max multiplicity = length, ranks
A212166.
A382302 counts partitions with max = max multiplicity = distinct length, ranks
A381543.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Max@@Last/@FactorInteger[#]==Total[Union[prix[#]]]&]
A317084
Number of integer partitions of n whose multiplicities are weakly increasing and span an initial interval of positive integers.
Original entry on oeis.org
1, 1, 1, 2, 2, 4, 4, 6, 7, 10, 11, 16, 17, 23, 27, 34, 38, 50, 54, 70, 79, 97, 107, 135, 148, 180, 205, 243, 270, 328, 360, 429, 480, 561, 625, 738, 810, 949, 1057, 1219, 1349, 1571, 1723, 1986, 2206, 2515, 2776, 3188, 3496, 3983, 4408, 4980, 5485, 6228, 6826
Offset: 0
The a(7) = 6 integer partitions are (7), (61), (52), (43), (421), (331).
-
normalQ[m_]:=Union[m]==Range[Max[m]];
Table[Length[Select[IntegerPartitions[n],And[normalQ[Length/@Split[#]],OrderedQ[Reverse[Length/@Split[#]]]]&]],{n,60}]
A375075
Numbers whose prime factorization exponents include at least one 1, at least one 2, at least one 3 and no other exponents.
Original entry on oeis.org
360, 504, 540, 600, 756, 792, 936, 1176, 1188, 1224, 1350, 1368, 1400, 1404, 1500, 1656, 1836, 1960, 2052, 2088, 2200, 2232, 2250, 2484, 2520, 2600, 2646, 2664, 2904, 2952, 3096, 3132, 3348, 3384, 3400, 3500, 3780, 3800, 3816, 3960, 3996, 4056, 4116, 4200, 4248, 4312, 4392, 4428
Offset: 1
-
Select[Range[4500], Union[FactorInteger[#][[;; , 2]]] == {1, 2, 3} &]
-
is(k) = Set(factor(k)[,2]) == [1, 2, 3];
A325373
Composite totally abnormal numbers. Heinz numbers of non-singleton totally abnormal integer partitions.
Original entry on oeis.org
9, 25, 27, 49, 81, 100, 121, 125, 169, 196, 225, 243, 289, 343, 361, 441, 484, 529, 625, 676, 729, 841, 961, 1000, 1089, 1156, 1225, 1331, 1369, 1444, 1521, 1681, 1764, 1849, 2116, 2187, 2197, 2209, 2401, 2601, 2744, 2809, 3025, 3125, 3249, 3364, 3375, 3481
Offset: 1
The sequence of terms together with their prime indices begins:
9: {2,2}
25: {3,3}
27: {2,2,2}
49: {4,4}
81: {2,2,2,2}
100: {1,1,3,3}
121: {5,5}
125: {3,3,3}
169: {6,6}
196: {1,1,4,4}
225: {2,2,3,3}
243: {2,2,2,2,2}
289: {7,7}
343: {4,4,4}
361: {8,8}
441: {2,2,4,4}
484: {1,1,5,5}
529: {9,9}
625: {3,3,3,3}
676: {1,1,6,6}
Cf.
A001597,
A055932,
A056239,
A112798,
A181819,
A317089,
A317090,
A317246,
A319152,
A319810,
A325332,
A325370,
A325372.
-
normQ[n_Integer]:=Or[n==1,PrimePi/@First/@FactorInteger[n]==Range[PrimeNu[n]]];
totabnQ[n_]:=And[!normQ[n],PrimeQ[n]||totabnQ[Times@@Prime/@Last/@If[n==1,{},FactorInteger[n]]]];
Select[Range[10000],!PrimeQ[#]&&totabnQ[#]&]
Comments