cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A378958 G.f. A(x) satisfies A(x) = 1 + x/A(x) * (1 - A(x) + A(x)^4).

Original entry on oeis.org

1, 1, 2, 8, 32, 145, 681, 3337, 16773, 86181, 450268, 2385544, 12784861, 69189509, 377576512, 2075423744, 11480230037, 63857579629, 356962271136, 2004255583560, 11298268724556, 63919517790933, 362806671879955, 2065443363987045, 11790688867079872, 67477283970889867
Offset: 0

Views

Author

Seiichi Manyama, Dec 12 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, n, (-1)^k*binomial(n, k)*binomial(3*n-4*k, n-k-1))/n);

Formula

a(n) = (1/n) * Sum_{k=0..n} (-1)^k * binomial(n,k) * binomial(3*n-4*k,n-k-1) for n > 0.

A383119 a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * binomial(4*k,k).

Original entry on oeis.org

1, 3, 21, 147, 1093, 8343, 64869, 510891, 4062277, 32539647, 262181601, 2122581123, 17252278789, 140695104943, 1150670390541, 9433965332127, 77512716483461, 638080242074447, 5261486780929209, 43450477494413751, 359308411992366513, 2974886601163646379, 24657831769475675253
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 17 2025

Keywords

Comments

Inverse binomial transform of A005810.

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(n - k) Binomial[n, k] Binomial[4 k, k], {k, 0, n}], {n, 0, 22}]
    Table[(-1)^n HypergeometricPFQ[{1/4, 1/2, 3/4, -n}, {1/3, 2/3, 1}, 256/27], {n, 0, 22}]
    nmax = 22; CoefficientList[Series[(1/x) Sum[Binomial[4 k, k] (x/(1 + x))^(k + 1), {k, 0, nmax}], {x, 0, nmax}], x]
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*binomial(4*k, k)); \\ Seiichi Manyama, Apr 17 2025

Formula

G.f.: (1/x) * Sum_{k>=0} binomial(4*k,k) * (x/(1 + x))^(k+1).
a(n) = [x^n] (1 + 3*x + 6*x^2 + 4*x^3 + x^4)^n.
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x/((1+x)^4 - x) ). See A317133. - Seiichi Manyama, Apr 17 2025
a(n) ~ 229^(n + 1/2) / (2^(7/2) * sqrt(Pi*n) * 3^(3*n + 1/2)). - Vaclav Kotesovec, Apr 17 2025

A371430 Expansion of (1/x) * Series_Reversion( x / ((1+x)^4 - x^2) ).

Original entry on oeis.org

1, 4, 21, 128, 851, 5984, 43759, 329396, 2535406, 19863592, 157874971, 1269833668, 10316765299, 84540929568, 697928139977, 5799156785376, 48461097907978, 407020852551016, 3434002483872566, 29090171931564848, 247333930963224287, 2109921586071433064
Offset: 0

Views

Author

Seiichi Manyama, Mar 23 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)^4-x^2))/x)
    
  • PARI
    a(n) = sum(k=0, n\2, (-1)^k*binomial(n+1, k)*binomial(4*n-4*k+4, n-2*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} (-1)^k * binomial(n+1,k) * binomial(4*n-4*k+4,n-2*k).

A371545 G.f. A(x) satisfies A(x) = (1 + x*A(x)^2 / (1+x))^2.

Original entry on oeis.org

1, 2, 7, 36, 209, 1312, 8663, 59298, 416961, 2993790, 21857208, 161768154, 1210949944, 9152366596, 69745701746, 535304423948, 4134240993874, 32105769989714, 250551371644825, 1963871015580984, 15454014753626079, 122044659649929546, 966951068210379441
Offset: 0

Views

Author

Seiichi Manyama, Mar 26 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 2*sum(k=0, n, (-1)^(n-k)*binomial(n-1, n-k)*binomial(4*k+2, k)/(4*k+2));

Formula

a(n) = 2 * Sum_{k=0..n} (-1)^(n-k) * binomial(n-1,n-k) * binomial(4*k+2,k)/(4*k+2).
Previous Showing 11-14 of 14 results.