cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-35 of 35 results.

A300402 Smallest integer i such that TREE(i) >= n.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 0

Views

Author

Felix Fröhlich, Mar 05 2018

Keywords

Comments

The sequence grows very slowly.
A rooted tree is a tree containing one special node labeled the "root".
TREE(n) gives the largest integer k such that a sequence T(1), T(2), ..., T(k) of vertex-colored (using up to n colors) rooted trees, each one T(i) having at most i vertices, exists such that T(i) <= T(j) does not hold for any i < j <= k. - Edited by Gus Wiseman, Jul 06 2020

Examples

			TREE(1) = 1, so a(n) = 1 for n <= 1.
TREE(2) = 3, so a(n) = 2 for 2 <= n <= 3.
TREE(3) > A(A(...A(1)...)), where A(x) = 2[x+1]x is a variant of Ackermann's function, a[n]b denotes a hyperoperation and the number of nested A() functions is 187196, so a(n) = 3 for at least 4 <= n <= A^A(187196)(1).
		

Crossrefs

Labeled rooted trees are counted by A000169 and A206429.

A318048 Size of the span of the unlabeled rooted tree with Matula-Goebel number n.

Original entry on oeis.org

1, 2, 3, 2, 4, 4, 4, 2, 6, 6, 5, 4, 6, 3, 9, 2, 6, 6, 4, 6, 6, 8, 10, 4, 12, 6, 10, 4, 9, 9, 6, 2, 12, 6, 9, 6, 6, 4, 9, 6, 9, 7, 6, 8, 15, 10, 15, 4, 5, 12, 9, 7, 4, 10, 16, 4, 7, 9, 8, 9, 10, 10, 11, 2, 13, 12, 6, 7, 14, 10, 9, 6, 10, 7, 21, 3, 12, 10, 12, 6
Offset: 1

Views

Author

Gus Wiseman, Aug 13 2018

Keywords

Comments

The span of a tree is defined to be the set of possible terminal subtrees of initial subtrees, or, which is the same, the set of possible initial subtrees of terminal subtrees.

Examples

			42 is the Matula-Goebel number of (o(o)(oo)), which has span {o, (o), (oo), (ooo), (oo(oo)), (o(o)o), (o(o)(oo))}, so a(42) = 7.
		

Crossrefs

Programs

  • Mathematica
    ext[c_,{}]:=c;ext[c_,s:{}]:=Extract[c,s];rpp[c_,v_,{}]:=v;rpp[c_,v_,s:{}]:=ReplacePart[c,v,s];
    RLO[ear_,rue:{}]:=Union@@(Function[x,rpp[ear,x,#2]]/@ReplaceList[ext[ear,#2],#1]&@@@Select[Tuples[{rue,Position[ear,_]}],MatchQ[ext[ear,#[[2]]],#[[1,1]]]&]);
    RL[ear_,rue:{}]:=FixedPoint[Function[keeps,Union[keeps,Join@@(RLO[#,rue]&/@keeps)]],{ear}];
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    MGTree[n_]:=If[n==1,{},MGTree/@primeMS[n]];
    Table[Length[Union[Cases[RL[MGTree[n],{List[__List]:>List[]}],_List,{1,Infinity}]]],{n,100}]

A324979 Number of rooted trees with n vertices that are not identity trees but whose non-leaf terminal subtrees are all different.

Original entry on oeis.org

0, 0, 1, 2, 5, 12, 29, 70, 168, 402, 959, 2284, 5434, 12923, 30727, 73055, 173678, 412830
Offset: 1

Views

Author

Gus Wiseman, Mar 21 2019

Keywords

Comments

An unlabeled rooted tree is an identity tree if there are no repeated branches directly under the same root.

Examples

			The a(3) = 1 through a(6) = 12 trees:
  (oo)  (ooo)   (oooo)    (ooooo)
        ((oo))  ((ooo))   ((oooo))
                (o(oo))   (o(ooo))
                (oo(o))   (oo(oo))
                (((oo)))  (ooo(o))
                          (((ooo)))
                          ((o)(oo))
                          ((o(oo)))
                          ((oo(o)))
                          (o((oo)))
                          (oo((o)))
                          ((((oo))))
		

Crossrefs

The Matula-Goebel numbers of these trees are given by A324978.

Programs

  • Mathematica
    rits[n_]:=Join@@Table[Union[Sort/@Tuples[rits/@ptn]],{ptn,IntegerPartitions[n-1]}];
    Table[Length[Select[rits[n],And[UnsameQ@@Cases[#,{},{0,Infinity}],!And@@Cases[mgtree[#],q:{}:>UnsameQ@@q,{0,Infinity}]]&]],{n,10}]

A325608 Numbers whose factorization into factors prime(i)/i does not have weakly decreasing nonzero multiplicities.

Original entry on oeis.org

147, 245, 294, 357, 490, 511, 539, 588, 595, 637, 681, 714, 735, 845, 847, 853, 867, 903, 980, 1022, 1029, 1043, 1078, 1083, 1135, 1176, 1183, 1190, 1239, 1241, 1267, 1274, 1309, 1362, 1421, 1428, 1445, 1470, 1505, 1519, 1547, 1553, 1563, 1617, 1631, 1690
Offset: 1

Views

Author

Gus Wiseman, May 12 2019

Keywords

Comments

Every positive integer has a unique q-factorization (encoded by A324924) into factors q(i) = prime(i)/i, i > 0. For example, 147 = q(1)^5 q(2) q(4)^2 has multiplicities (5,1,2), which are not weakly decreasing, so 147 belongs to the sequence.

Crossrefs

Programs

  • Mathematica
    difac[n_]:=If[n==1,{},With[{i=PrimePi[FactorInteger[n][[1,1]]]},Sort[Prepend[difac[n*i/Prime[i]],i]]]];
    Select[Range[1000],!GreaterEqual@@Length/@Split[difac[#]]&]

A325697 Number of rooted trees with n vertices with no proper terminal subtree appearing at only one position.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 5, 5, 11, 13, 27, 30, 69, 76, 168
Offset: 1

Views

Author

Gus Wiseman, May 17 2019

Keywords

Comments

The Matula-Goebel numbers of these trees are given by A325661.

Examples

			The a(4) = 1 through a(9) = 11 rooted trees:
  (ooo)  (oooo)    (ooooo)    (oooooo)      (ooooooo)      (oooooooo)
         ((o)(o))  (o(o)(o))  ((oo)(oo))    (o(oo)(oo))    ((ooo)(ooo))
                              (oo(o)(o))    (ooo(o)(o))    (oo(oo)(oo))
                              ((o)(o)(o))   (o(o)(o)(o))   (oooo(o)(o))
                              (((o))((o)))  (o((o))((o)))  (oo(o)(o)(o))
                                                           (((oo))((oo)))
                                                           ((o)(o)(o)(o))
                                                           ((o(o))(o(o)))
                                                           (oo((o))((o)))
                                                           ((o)((o))((o)))
                                                           ((((o)))(((o))))
		

Crossrefs

Programs

  • Mathematica
    urt[n_]:=Join@@Table[Union[Sort/@Tuples[urt/@ptn]],{ptn,IntegerPartitions[n-1]}];
    Table[Length[Select[urt[n],!MemberQ[Length/@Split[Sort[Extract[#,Most[Position[#,_List]]]]],1]&]],{n,15}]
Previous Showing 31-35 of 35 results.