A330059
Number of set-systems with n vertices and no endpoints.
Original entry on oeis.org
1, 1, 2, 63, 29471, 2144945976, 9223371624669871587, 170141183460469227599616678821978424151, 57896044618658097711785492504343953752410420469299789800819363538011879603532
Offset: 0
The a(2) = 2 set-systems are {} and {{1},{2},{1,2}}. The a(3) = 63 set-systems are:
0 {2}{3}{12}{13} {1}{3}{12}{13}{23}
{1}{2}{12} {2}{12}{13}{23} {2}{3}{12}{13}{23}
{1}{3}{13} {2}{3}{12}{123} {1}{2}{12}{23}{123}
{2}{3}{23} {2}{3}{13}{123} {1}{2}{13}{23}{123}
{12}{13}{23} {3}{12}{13}{23} {1}{3}{12}{13}{123}
{1}{23}{123} {1}{13}{23}{123} {1}{3}{12}{23}{123}
{2}{13}{123} {2}{12}{13}{123} {1}{3}{13}{23}{123}
{3}{12}{123} {2}{12}{23}{123} {2}{3}{12}{13}{123}
{12}{13}{123} {2}{13}{23}{123} {2}{3}{12}{23}{123}
{12}{23}{123} {3}{12}{13}{123} {2}{3}{13}{23}{123}
{13}{23}{123} {3}{12}{23}{123} {1}{12}{13}{23}{123}
{1}{2}{13}{23} {3}{13}{23}{123} {2}{12}{13}{23}{123}
{1}{2}{3}{123} {12}{13}{23}{123} {3}{12}{13}{23}{123}
{1}{3}{12}{23} {1}{2}{3}{12}{13} {1}{2}{3}{12}{13}{23}
{1}{12}{13}{23} {1}{2}{3}{12}{23} {1}{2}{3}{12}{13}{123}
{1}{2}{13}{123} {1}{2}{3}{13}{23} {1}{2}{3}{12}{23}{123}
{1}{2}{23}{123} {1}{2}{12}{13}{23} {1}{2}{3}{13}{23}{123}
{1}{3}{12}{123} {1}{2}{3}{12}{123} {1}{2}{12}{13}{23}{123}
{1}{3}{23}{123} {1}{2}{3}{13}{123} {1}{3}{12}{13}{23}{123}
{1}{12}{13}{123} {1}{2}{3}{23}{123} {2}{3}{12}{13}{23}{123}
{1}{12}{23}{123} {1}{2}{12}{13}{123} {1}{2}{3}{12}{13}{23}{123}
The case with no singletons is
A330056.
The unlabeled version is
A330054 (by weight) or
A330124 (by vertices).
Set-systems with no singletons are
A016031.
Non-isomorphic set-systems with no singletons are
A306005 (by weight).
Cf.
A000612,
A007716,
A055621,
A302545,
A317533,
A317794,
A319559,
A320665,
A321405,
A330052,
A330057,
A330058.
-
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Min@@Length/@Split[Sort[Join@@#]]>1&]],{n,0,4}]
-
a(n) = {sum(k=0, n, (-1)^k*binomial(n,k)*2^(2^(n-k)-1)*sum(j=0, k, stirling(k,j,2)*2^(j*(n-k)) ))} \\ Andrew Howroyd, Jan 16 2023
A330057
Number of set-systems covering n vertices with no singletons or endpoints.
Original entry on oeis.org
1, 0, 0, 5, 1703, 66954642, 144115175199102143, 1329227995784915808340204290157341181, 226156424291633194186662080095093568664788471116325389572604136316742486364
Offset: 0
The a(3) = 5 set-systems:
{{1,2},{1,3},{2,3}}
{{1,2},{1,3},{1,2,3}}
{{1,2},{2,3},{1,2,3}}
{{1,3},{2,3},{1,2,3}}
{{1,2},{1,3},{2,3},{1,2,3}}
The version for non-isomorphic set-systems is
A330055 (by weight).
The non-covering version is
A330056.
Set-systems with no singletons are
A016031.
Set-systems with no endpoints are
A330059.
Non-isomorphic set-systems with no singletons are
A306005 (by weight).
Non-isomorphic set-systems with no endpoints are
A330054 (by weight).
Non-isomorphic set-systems counted by vertices are
A000612.
Non-isomorphic set-systems counted by weight are
A283877.
-
Table[Length[Select[Subsets[Subsets[Range[n],{2,n}]],Union@@#==Range[n]&&Min@@Length/@Split[Sort[Join@@#]]>1&]],{n,0,4}]
-
\\ here b(n) is A330056(n).
AS2(n, k) = {sum(i=0, min(n, k), (-1)^i * binomial(n, i) * stirling(n-i, k-i, 2) )}
b(n) = {sum(k=0, n, (-1)^k*binomial(n,k)*2^(2^(n-k)-(n-k)-1) * sum(j=0, k\2, sum(i=0, k-2*j, binomial(k,i) * AS2(k-i, j) * (2^(n-k)-1)^i * 2^(j*(n-k)) )))}
a(n) = {sum(k=0, n, (-1)^k*binomial(n,k)*b(n-k))} \\ Andrew Howroyd, Jan 16 2023
A319876
Irregular triangle read by rows where T(n,k) is the number of permutations of {1,...,n} whose action on 2-element subsets of {1,...,n} has k cycles.
Original entry on oeis.org
1, 0, 2, 0, 2, 3, 1, 0, 0, 14, 0, 9, 0, 1, 0, 0, 24, 50, 20, 0, 15, 10, 0, 0, 1, 0, 0, 0, 264, 0, 340, 0, 40, 0, 60, 0, 15, 0, 0, 0, 1, 0, 0, 0, 720, 1764, 504, 0, 1120, 630, 0, 0, 70, 105, 105, 0, 0, 21, 0, 0, 0, 0, 1, 0, 0, 0, 0, 13488, 0, 14112, 0, 3724, 0
Offset: 1
Triangle begins:
1
0 2
0 2 3 1
0 0 14 0 9 0 1
0 0 24 50 20 0 15 10 0 0 1
0 0 0 264 0 340 0 40 0 60 0 15 0 0 0 1
The T(4,4) = 9 permutations: (1243), (1324), (1432), (2134), (2143), (3214), (3412), (4231), (4321).
Row n has
A000124(n - 1) terms. Row sums are the factorial numbers
A000142.
-
Table[Length[Select[Permutations[Range[n]],PermutationCycles[Ordering[Map[Sort,Subsets[Range[n],{2}]/.Rule@@@Table[{i,#[[i]]},{i,n}],{1}]],Length]==k&]],{n,5},{k,0,n*(n-1)/2}]
A330124
Number of unlabeled set-systems with n vertices and no endpoints.
Original entry on oeis.org
1, 1, 2, 22, 1776
Offset: 0
Non-isomorphic representatives of the a(3) = 22 set-systems:
0
{1}{2}{12}
{12}{13}{23}
{1}{23}{123}
{12}{13}{123}
{1}{2}{13}{23}
{1}{2}{3}{123}
{1}{12}{13}{23}
{1}{2}{13}{123}
{1}{12}{13}{123}
{1}{12}{23}{123}
{12}{13}{23}{123}
{1}{2}{3}{12}{13}
{1}{2}{12}{13}{23}
{1}{2}{3}{12}{123}
{1}{2}{12}{13}{123}
{1}{2}{13}{23}{123}
{1}{12}{13}{23}{123}
{1}{2}{3}{12}{13}{23}
{1}{2}{3}{12}{13}{123}
{1}{2}{12}{13}{23}{123}
{1}{2}{3}{12}{13}{23}{123}
Partial sums of the covering case
A330196.
Unlabeled set-systems with no endpoints counted by weight are
A330054.
Unlabeled set-systems with no singletons are
A317794.
Unlabeled set-systems counted by vertices are
A000612.
Unlabeled set-systems counted by weight are
A283877.
The case with no singletons is
A320665.
A368096
Triangle read by rows where T(n,k) is the number of non-isomorphic set-systems of length k and weight n.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 3, 1, 0, 1, 5, 8, 3, 1, 0, 1, 8, 18, 13, 3, 1, 0, 1, 9, 32, 37, 15, 3, 1, 0, 1, 13, 55, 96, 59, 16, 3, 1, 0, 1, 14, 91, 209, 196, 74, 16, 3, 1, 0, 1, 19, 138, 449, 573, 313, 82, 16, 3, 1, 0, 1, 20, 206, 863, 1529, 1147, 403, 84, 16, 3, 1
Offset: 0
Triangle begins:
1
0 1
0 1 1
0 1 2 1
0 1 4 3 1
0 1 5 8 3 1
0 1 8 18 13 3 1
0 1 9 32 37 15 3 1
0 1 13 55 96 59 16 3 1
0 1 14 91 209 196 74 16 3 1
0 1 19 138 449 573 313 82 16 3 1
...
Non-isomorphic representatives of the set-systems counted in row n = 5:
. {12345} {1}{1234} {1}{2}{123} {1}{2}{3}{12} {1}{2}{3}{4}{5}
{1}{2345} {1}{2}{134} {1}{2}{3}{14}
{12}{123} {1}{2}{345} {1}{2}{3}{45}
{12}{134} {1}{12}{13}
{12}{345} {1}{12}{23}
{1}{12}{34}
{1}{23}{24}
{1}{23}{45}
For multiset partitions we have
A317533.
Counting connected components instead of edges gives
A321194.
For set multipartitions we have
A334550.
For strict multiset partitions we have
A368099.
A316980 counts non-isomorphic strict multiset partitions, connected
A319557.
Cf.
A101881,
A255903,
A302545,
A306005,
A317532,
A317794,
A317795,
A319560,
A321405,
A368094,
A368095.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]] /@ Cases[Subsets[set],{i,_}];
mpm[n_]:=Join@@Table[Union[Sort[Sort /@ (#/.x_Integer:>s[[x]])]& /@ sps[Range[n]]],{s,Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n]}];
brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])], {p,Permutations[Union@@m]}]]];
Table[Length[Union[brute /@ Select[mpm[n],UnsameQ@@#&&And@@UnsameQ@@@#&&Length[#]==k&]]], {n,0,5},{k,0,n}]
-
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
K(q, t, k)={WeighT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k))}
G(n)={my(s=0); forpart(q=n, my(p=sum(t=1, n, y^t*subst(x*Ser(K(q, t, n\t))/t, x, x^t))); s+=permcount(q)*exp(p-subst(subst(p, x, x^2), y, y^2))); s/n!}
T(n)={[Vecrev(p) | p <- Vec(G(n))]}
{ my(A=T(10)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 11 2024
A368099
Triangle read by rows where T(n,k) is the number of non-isomorphic k-element sets of finite nonempty multisets with cardinalities summing to n, or strict multiset partitions of weight n and length k.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 3, 4, 1, 0, 5, 12, 5, 1, 0, 7, 28, 22, 5, 1, 0, 11, 66, 83, 31, 5, 1, 0, 15, 134, 252, 147, 34, 5, 1, 0, 22, 280, 726, 620, 203, 35, 5, 1, 0, 30, 536, 1946, 2283, 1069, 235, 35, 5, 1, 0, 42, 1043, 4982, 7890, 5019, 1469, 248, 35, 5, 1
Offset: 0
Triangle begins:
1
0 1
0 2 1
0 3 4 1
0 5 12 5 1
0 7 28 22 5 1
0 11 66 83 31 5 1
0 15 134 252 147 34 5 1
0 22 280 726 620 203 35 5 1
0 30 536 1946 2283 1069 235 35 5 1
0 42 1043 4982 7890 5019 1469 248 35 5 1
...
Row n = 4 counts the following representatives:
. {{1,1,1,1}} {{1},{1,1,1}} {{1},{2},{1,1}} {{1},{2},{3},{4}}
{{1,1,1,2}} {{1},{1,1,2}} {{1},{2},{1,2}}
{{1,1,2,2}} {{1},{1,2,2}} {{1},{2},{1,3}}
{{1,1,2,3}} {{1},{1,2,3}} {{1},{2},{3,3}}
{{1,2,3,4}} {{1},{2,2,2}} {{1},{2},{3,4}}
{{1},{2,2,3}}
{{1},{2,3,4}}
{{1,1},{1,2}}
{{1,1},{2,2}}
{{1,1},{2,3}}
{{1,2},{1,3}}
{{1,2},{3,4}}
Counting connected components instead of edges gives
A321194.
For set multipartitions we have
A334550.
Cf.
A255903,
A296122,
A302545,
A306005,
A317532,
A317775,
A317794,
A317795,
A319560,
A368094,
A368095.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mpm[n_]:=Join@@Table[Union[Sort[Sort /@ (#/.x_Integer:>s[[x]])]&/@sps[Range[n]]],{s,Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n]}];
brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])], {p,Permutations[Union@@m]}]]];
Table[Length[Union[brute /@ Select[mpm[n],UnsameQ@@#&&Length[#]==k&]]], {n,0,5},{k,0,n}]
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
K(q, t, k)={EulerT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k))}
G(n)={my(s=0); forpart(q=n, my(p=sum(t=1, n, y^t*subst(x*Ser(K(q, t, n\t))/t, x, x^t))); s+=permcount(q)*exp(p-subst(subst(p, x, x^2), y, y^2))); s/n!}
T(n)={[Vecrev(p) | p <- Vec(G(n))]}
{ my(A=T(10)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 11 2024
A330196
Number of unlabeled set-systems covering n vertices with no endpoints.
Original entry on oeis.org
1, 0, 1, 20, 1754
Offset: 0
Non-isomorphic representatives of the a(3) = 20 set-systems:
{12}{13}{23}
{1}{23}{123}
{12}{13}{123}
{1}{2}{13}{23}
{1}{2}{3}{123}
{1}{12}{13}{23}
{1}{2}{13}{123}
{1}{12}{13}{123}
{1}{12}{23}{123}
{12}{13}{23}{123}
{1}{2}{3}{12}{13}
{1}{2}{12}{13}{23}
{1}{2}{3}{12}{123}
{1}{2}{12}{13}{123}
{1}{2}{13}{23}{123}
{1}{12}{13}{23}{123}
{1}{2}{3}{12}{13}{23}
{1}{2}{3}{12}{13}{123}
{1}{2}{12}{13}{23}{123}
{1}{2}{3}{12}{13}{23}{123}
First differences of the non-covering version
A330124.
Unlabeled set-systems with no endpoints counted by vertices are
A317794.
Unlabeled set-systems with no endpoints counted by weight are
A330054.
Unlabeled set-systems counted by vertices are
A000612.
Unlabeled set-systems counted by weight are
A283877.
A317792
Number of non-isomorphic multiset partitions, using normal multisets, of normal multisets of size n.
Original entry on oeis.org
1, 1, 3, 6, 15, 31, 73, 154, 345, 742, 1627, 3499
Offset: 0
Non-isomorphic representatives of the a(4) = 15 normal multiset partitions:
{1111}, {1112}, {1122}, {1123}, {1234},
{1}{111}, {1}{112}, {1}{122}, {1}{123}, {11}{11}, {11}{12}, {12}{12},
{1}{1}{11}, {1}{1}{12},
{1}{1}{1}{1}.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
sysnorm[{}]:={};sysnorm[m_]:=If[Union@@m!=Range[Max@@Flatten[m]],sysnorm[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[sysnorm[m,1]]]];sysnorm[m_,aft_]:=If[Length[Union@@m]<=aft,{m},With[{mx=Table[Count[m,i,{2}],{i,Select[Union@@m,#>=aft&]}]},Union@@(sysnorm[#,aft+1]&/@Union[Table[Map[Sort,m/.{par+aft-1->aft,aft->par+aft-1},{0,1}],{par,First/@Position[mx,Max[mx]]}]])]];
allnorm[n_]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
Table[Length[Union[sysnorm/@Select[Join@@mps/@allnorm[n],And@@(Union[#]==Range[Max@@#]&)/@#&]]],{n,6}]
Comments