cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A318653 Numerators of the sequence whose Dirichlet convolution with itself yields A007947, the squarefree kernel of n.

Original entry on oeis.org

1, 1, 3, 1, 5, 3, 7, 1, 3, 5, 11, 3, 13, 7, 15, 3, 17, 3, 19, 5, 21, 11, 23, 3, -5, 13, 15, 7, 29, 15, 31, 3, 33, 17, 35, 3, 37, 19, 39, 5, 41, 21, 43, 11, 15, 23, 47, 9, -21, -5, 51, 13, 53, 15, 55, 7, 57, 29, 59, 15, 61, 31, 21, 5, 65, 33, 67, 17, 69, 35, 71, 3, 73, 37, -15, 19, 77, 39, 79, 15, 3, 41, 83, 21, 85, 43, 87, 11, 89, 15
Offset: 1

Views

Author

Antti Karttunen, Aug 31 2018

Keywords

Comments

No zeros among the first 2^20 terms.

Crossrefs

Cf. A007947, A299150 (denominators).

Programs

  • Mathematica
    rad[n_] := Times @@ (First@# & /@ FactorInteger[n]); f[1] = 1; f[n_] := f[n] = (rad[n] - DivisorSum[n, f[#]*f[n/#] &, 1 < # < n &])/2; a[n_] := Numerator [f[n]]; Array[a, 100] (* Amiram Eldar, Dec 07 2020 *)
  • PARI
    up_to = 65537;
    A007947(n) = factorback(factorint(n)[, 1]);
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA007947(n)));
    A318653(n) = numerator(v318653_aux[n]);
    for(n=1, 100, print1(numerator(direuler(p=2, n, ((1 + p*X - X)/(1 - X))^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 08 2025

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A007947(n) - Sum_{d|n, d>1, d 1.
From Vaclav Kotesovec, May 08 2025: (Start)
Let f(s) = Product_{p prime} (1 + 1/p^(2*s-1) - 1/p^(2*s-2) - 1/p^s).
Sum_{k=1..n} A318653(k)/A299150(k) ~ n^2 * sqrt(Pi*f(2)/(24*log(n))) * (1 - (gamma - 1 + f'(2)/f(2) + 6*zeta'(2)/Pi^2) / (4*log(n))), where
f(2) = A065464 = Product_{p prime} (1 - 2/p^2 + 1/p^3) = 0.4282495056770944402187657075818235461212985133559361440319...
f'(2) = f(2) * Sum_{p prime} (3*p-2)*log(p) / ((p-1)*(p^2+p-1)) = f(2) * 1.469536740824614833203393993450164364663334798759143895712...
and gamma is the Euler-Mascheroni constant A001620. (End)

A318680 a(n) = n * A318653(n).

Original entry on oeis.org

1, 2, 9, 4, 25, 18, 49, 8, 27, 50, 121, 36, 169, 98, 225, 48, 289, 54, 361, 100, 441, 242, 529, 72, -125, 338, 405, 196, 841, 450, 961, 96, 1089, 578, 1225, 108, 1369, 722, 1521, 200, 1681, 882, 1849, 484, 675, 1058, 2209, 432, -1029, -250, 2601, 676, 2809, 810, 3025, 392, 3249, 1682, 3481, 900, 3721, 1922, 1323, 320
Offset: 1

Views

Author

Antti Karttunen, Sep 02 2018

Keywords

Comments

Dirichlet convolution of a(n)/A299150(n) with itself gives A064549 [= n * Product_{primes p|n} p], like gives also the self-convolution of A318511(n)/A318512(n), as it is the same ratio reduced to its lowest terms. However, in contrast to A318511, this sequence is multiplicative as both A000027 and A318653 are multiplicative sequences (also, because A064549 and A299150 are both multiplicative).
A007814 gives the 2-adic valuation of this sequence, because there are no even terms in A318653.

Crossrefs

Programs

  • Mathematica
    rad[n_] := Times @@ (First@# & /@ FactorInteger[n]); f[1] = 1; f[n_] := f[n] = (rad[n] - DivisorSum[n, f[#]*f[n/#] &, 1 < # < n &])/2; a[n_] := n * Numerator [f[n]]; Array[a, 100] (* Amiram Eldar, Dec 07 2020 *)
  • PARI
    up_to = 65537;
    A007947(n) = factorback(factorint(n)[, 1]);
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA007947(n)));
    A318653(n) = numerator(v318653_aux[n]);
    A318680(n) = (n*A318653(n));

Formula

a(n) = n * A318653(n).
a(n)/A299150(n) = A318511(n)/A318512(n).

A383768 Numerators of the sequence whose Dirichlet convolution with itself yields cubes (A000578).

Original entry on oeis.org

1, 4, 27, 24, 125, 54, 343, 160, 2187, 250, 1331, 324, 2197, 686, 3375, 1120, 4913, 2187, 6859, 1500, 9261, 2662, 12167, 2160, 46875, 4394, 98415, 4116, 24389, 3375, 29791, 8064, 35937, 9826, 42875, 6561, 50653, 13718, 59319, 10000, 68921, 9261, 79507, 15972, 273375
Offset: 1

Views

Author

Vaclav Kotesovec, May 09 2025

Keywords

Crossrefs

Cf. A000578, A299149, A299150, A318649, A318512, A383769 (denominators).

Programs

  • PARI
    for(n=1, 100, print1(numerator(direuler(p=2, n, 1/(1-p^3*X)^(1/2))[n]), ", "))

Formula

Sum_{k=1..n} A383768(k) / A383769(k) ~ n^4/(4*sqrt(Pi*log(n))) * (1 + (1-2*gamma)/(8*log(n))), where gamma is the Euler-Mascheroni constant A001620.

A383769 Denominators of the sequence whose Dirichlet convolution with itself yields cubes (A000578).

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 2, 1, 8, 1, 2, 1, 2, 1, 4, 1, 2, 2, 2, 1, 4, 1, 2, 1, 8, 1, 16, 1, 2, 1, 2, 1, 4, 1, 4, 1, 2, 1, 4, 1, 2, 1, 2, 1, 16, 1, 2, 1, 8, 2, 4, 1, 2, 4, 4, 1, 4, 1, 2, 1, 2, 1, 16, 1, 4, 1, 2, 1, 4, 1, 2, 1, 2, 1, 16, 1, 4, 1, 2, 1, 128, 1, 2, 1, 4, 1, 4
Offset: 1

Views

Author

Vaclav Kotesovec, May 09 2025

Keywords

Crossrefs

Cf. A000578, A299149, A299150, A318649, A318512, A383768 (numerators).

Programs

  • PARI
    for(n=1, 100, print1(denominator(direuler(p=2, n, 1/(1-p^3*X)^(1/2))[n]), ", "))

A383791 Numerators of the sequence whose Dirichlet convolution with itself yields fourth powers (A000583).

Original entry on oeis.org

1, 8, 81, 96, 625, 324, 2401, 1280, 19683, 2500, 14641, 3888, 28561, 9604, 50625, 17920, 83521, 19683, 130321, 30000, 194481, 58564, 279841, 51840, 1171875, 114244, 2657205, 115248, 707281, 101250, 923521, 258048, 1185921, 334084, 1500625, 236196, 1874161, 521284, 2313441
Offset: 1

Views

Author

Vaclav Kotesovec, May 10 2025

Keywords

Comments

Numerators of Dirichlet g.f.: Sum_{n>=1} a(n)/n^s = zeta(s-4)^(1/2).

Crossrefs

Cf. A000583, A383792 (denominators).

Programs

  • PARI
    for(n=1, 100, print1(numerator(direuler(p=2, n, 1/(1-p^4*X)^(1/2))[n]), ", "))

Formula

Sum_{k=1..n} A383791(k) / A383792(k) ~ n^5 / (5*sqrt(Pi*log(n))) * (1 + (1/5 - gamma/2)/(2*log(n))), where gamma is the Euler-Mascheroni constant A001620.

A383792 Denominators of the sequence whose Dirichlet convolution with itself yields fourth powers (A000583).

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 2, 1, 8, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 1, 2, 1, 8, 1, 16, 1, 2, 1, 2, 1, 4, 1, 4, 1, 2, 1, 4, 1, 2, 1, 2, 1, 16, 1, 2, 1, 8, 1, 4, 1, 2, 2, 4, 1, 4, 1, 2, 1, 2, 1, 16, 1, 4, 1, 2, 1, 4, 1, 2, 1, 2, 1, 16, 1, 4, 1, 2, 1, 128, 1, 2, 1, 4
Offset: 1

Views

Author

Vaclav Kotesovec, May 10 2025

Keywords

Comments

Denominators of Dirichlet g.f.: Sum_{n>=1} a(n)/n^s = zeta(s-4)^(1/2).
First differs from A318658 at n = 54.

Crossrefs

Programs

  • PARI
    for(n=1, 100, print1(denominator(direuler(p=2, n, 1/(1-p^4*X)^(1/2))[n]), ", "))
Previous Showing 11-16 of 16 results.