A330453
Number of strict multiset partitions of multiset partitions of integer partitions of n.
Original entry on oeis.org
1, 1, 3, 9, 23, 62, 161, 410, 1031, 2579, 6359, 15575, 37830, 91241, 218581, 520544, 1232431, 2902644, 6802178, 15866054, 36844016, 85202436, 196251933, 450341874, 1029709478, 2346409350, 5329371142, 12066816905, 27240224766, 61317231288, 137643961196
Offset: 0
The a(4) = 23 partitions:
((4)) ((22)) ((31)) ((211)) ((1111))
((2)(2)) ((1)(3)) ((1)(21)) ((1)(111))
((1))((3)) ((2)(11)) ((11)(11))
((1)(1)(2)) ((1))((111))
((1))((21)) ((1)(1)(11))
((2))((11)) ((1))((1)(11))
((1))((1)(2)) ((1)(1)(1)(1))
((2))((1)(1)) ((11))((1)(1))
((1))((1)(1)(1))
The not necessarily strict case is
A007713.
Cf.
A001055,
A001970,
A050336,
A050343,
A089259,
A261049,
A271619,
A316980,
A318566,
A323787-
A323795,
A330452-
A330459,
A330461,
A330463.
-
with(numtheory): with(combinat):
b:= proc(n) option remember; `if`(n=0, 1, add(add(d*
numbpart(d), d=divisors(j))*b(n-j), j=1..n)/n)
end:
a:= proc(n) a(n):= `if`(n<2, 1, add(a(n-k)*add(b(d)
*d*(-1)^(k/d+1), d=divisors(k)), k=1..n)/n)
end:
seq(a(n), n=0..32); # Alois P. Heinz, Jul 18 2021
-
ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]];
Table[Length[Select[ppl[n,3],UnsameQ@@#&]],{n,0,10}]
A323786
Number of non-isomorphic weight-n multisets of multisets of non-singleton multisets.
Original entry on oeis.org
1, 0, 2, 3, 19, 39, 200, 615, 2849, 11174, 52377, 239269, 1191090, 6041975, 32275288, 177797719, 1017833092, 6014562272, 36717301665, 230947360981, 1495562098099, 9956230757240, 68070158777759, 477439197541792, 3432259679880648, 25267209686664449
Offset: 0
Non-isomorphic representatives of the a(4) = 19 multiset partitions:
{{1111}} {{1112}} {{1123}} {{1234}}
{{11}{11}} {{1122}} {{11}{23}} {{12}{34}}
{{11}}{{11}} {{11}{12}} {{12}{13}} {{12}}{{34}}
{{11}{22}} {{11}}{{23}}
{{12}{12}} {{12}}{{13}}
{{11}}{{12}}
{{11}}{{22}}
{{12}}{{12}}
Non-isomorphic representatives of the a(5) = 39 multiset partitions:
{{11111}} {{11112}} {{11123}} {{11234}} {{12345}}
{{11}{111}} {{11122}} {{11223}} {{11}{234}} {{12}{345}}
{{11}}{{111}} {{11}{112}} {{11}{123}} {{12}{134}} {{12}}{{345}}
{{11}{122}} {{11}{223}} {{23}{114}}
{{12}{111}} {{12}{113}} {{11}}{{234}}
{{12}{112}} {{12}{123}} {{12}}{{134}}
{{22}{111}} {{13}{122}} {{23}}{{114}}
{{11}}{{112}} {{23}{111}}
{{11}}{{122}} {{11}}{{123}}
{{12}}{{111}} {{11}}{{223}}
{{12}}{{112}} {{12}}{{113}}
{{22}}{{111}} {{12}}{{123}}
{{13}}{{122}}
{{23}}{{111}}
A330464
Number of non-isomorphic weight-n sets of set-systems with distinct multiset unions.
Original entry on oeis.org
1, 1, 3, 9, 32, 111, 463, 1942
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(3) = 9 sets:
{} {{{1}}} {{{1,2}}} {{{1,2,3}}}
{{{1},{2}}} {{{1},{1,2}}}
{{{1}},{{2}}} {{{1},{2,3}}}
{{{1}},{{1,2}}}
{{{1}},{{2,3}}}
{{{1},{2},{3}}}
{{{1}},{{1},{2}}}
{{{1}},{{2},{3}}}
{{{1}},{{2}},{{3}}}
Non-isomorphic sets of sets are
A283877.
Non-isomorphic sets of sets of sets are
A323790.
Non-isomorphic set partitions of set-systems are
A323795.
Cf.
A089259,
A141268,
A271619,
A279375,
A279785,
A306186,
A316980,
A317533,
A318564,
A318565,
A318566,
A330459,
A330472.
Comments