cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A293483 The number of 6th powers in the multiplicative group modulo n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 5, 1, 2, 1, 2, 2, 8, 1, 3, 2, 1, 5, 11, 1, 10, 2, 3, 1, 14, 2, 5, 4, 5, 8, 2, 1, 6, 3, 2, 2, 20, 1, 7, 5, 2, 11, 23, 2, 7, 10, 8, 2, 26, 3, 10, 1, 3, 14, 29, 2, 10, 5, 1, 8, 4, 5, 11, 8, 11, 2, 35, 1, 12, 6, 10, 3, 5, 2, 13, 4, 9, 20
Offset: 1

Views

Author

R. J. Mathar, Oct 10 2017

Keywords

Comments

The size of the set of numbers j^6 mod n, gcd(j,n)=1, 1 <= j <= n.
A000010(n) / a(n) is another multiplicative integer sequence.

Crossrefs

The number of k-th powers in the multiplicative group modulo n: A046073 (k=2), A087692 (k=3), A250207 (k=4), A293482 (k=5), this sequence (k=6), A293484 (k=7), A293485 (k=8).

Programs

  • Maple
    A293483 := proc(n)
        local r,j;
        r := {} ;
        for j from 1 to n do
            if igcd(j,n)= 1 then
                r := r union { modp(j &^ 6,n) } ;
            end if;
        end do:
        nops(r) ;
    end proc:
    seq(A293483(n),n=1..120) ;
  • Mathematica
    a[n_] := EulerPhi[n]/Count[Range[0, n - 1]^6 - 1, k_ /; Divisible[k, n]];
    Array[a, 100] (* Jean-François Alcover, May 24 2023 *)
    f[p_, e_] := (p - 1)*p^(e - 1)/If[Mod[p, 6] == 1, 6, 2]; f[2, e_] := If[e <= 3, 1, 2^(e - 3)]; f[3, e_] := If[e <= 2, 1, 3^(e - 2)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 10 2023 *)

Formula

Conjecture: a(2^e) = 1 for e <= 3; a(2^e) = 2^(e-3) for e >= 3; a(3^e) = 1 for e <= 2; a(3^e) = 3^(e-2) for e >= 2; a(p^e) = (p-1)*p^(e-1)/2 for p == 5 (mod 6); a(p^e) = (p-1)*p^(e-1)/6 for p == 1 (mod 6). - R. J. Mathar, Oct 13 2017
a(n) = A000010(n)/A319100(n). This implies that the conjecture above is true. - Jianing Song, Nov 10 2019

A354057 Square array read by ascending antidiagonals: T(n,k) is the number of solutions to x^k == 1 (mod n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 4, 1, 2, 1, 1, 1, 4, 3, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 3, 4, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 6, 1, 4, 1, 2, 1, 1, 1, 4, 1, 4, 1, 4, 1, 2, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Jianing Song, May 16 2022

Keywords

Comments

Row n and Row n' are the same if and only if (Z/nZ)* = (Z/n'Z)*, where (Z/nZ)* is the multiplicative group of integers modulo n.
Given n, T(n,k) only depends on gcd(k,psi(n)). For the truncated version see A354060.
Each column is multiplicative.

Examples

			  n/k  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20
   1   1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
   2   1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
   3   1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2
   4   1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2
   5   1  2  1  4  1  2  1  4  1  2  1  4  1  2  1  4  1  2  1  4
   6   1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2
   7   1  2  3  2  1  6  1  2  3  2  1  6  1  2  3  2  1  6  1  2
   8   1  4  1  4  1  4  1  4  1  4  1  4  1  4  1  4  1  4  1  4
   9   1  2  3  2  1  6  1  2  3  2  1  6  1  2  3  2  1  6  1  2
  10   1  2  1  4  1  2  1  4  1  2  1  4  1  2  1  4  1  2  1  4
  11   1  2  1  2  5  2  1  2  1 10  1  2  1  2  5  2  1  2  1 10
  12   1  4  1  4  1  4  1  4  1  4  1  4  1  4  1  4  1  4  1  4
  13   1  2  3  4  1  6  1  4  3  2  1 12  1  2  3  4  1  6  1  4
  14   1  2  3  2  1  6  1  2  3  2  1  6  1  2  3  2  1  6  1  2
  15   1  4  1  8  1  4  1  8  1  4  1  8  1  4  1  8  1  4  1  8
  16   1  4  1  8  1  4  1  8  1  4  1  8  1  4  1  8  1  4  1  8
  17   1  2  1  4  1  2  1  8  1  2  1  4  1  2  1 16  1  2  1  4
  18   1  2  3  2  1  6  1  2  3  2  1  6  1  2  3  2  1  6  1  2
  19   1  2  3  2  1  6  1  2  9  2  1  6  1  2  3  2  1 18  1  2
  20   1  4  1  8  1  4  1  8  1  4  1  8  1  4  1  8  1  4  1  8
		

Crossrefs

k-th column: A060594 (k=2), A060839 (k=3), A073103 (k=4), A319099 (k=5), A319100 (k=6), A319101 (k=7), A247257 (k=8).
Applying Moebius transform to the rows gives A354059.
Applying Moebius transform to the columns gives A354058.
Cf. A327924.

Programs

  • PARI
    T(n,k)=my(Z=znstar(n)[2]); prod(i=1, #Z, gcd(k, Z[i]))

Formula

If (Z/nZ)* = C_{k_1} X C_{k_2} X ... X C_{k_r}, then T(n,k) = Product_{i=1..r} gcd(k,k_r).
T(p^e,k) = gcd((p-1)*p^(e-1),k) for odd primes p. T(2,k) = 1, T(2^e,k) = 2*gcd(2^(e-2),k) if k is even and 1 if k is odd.
A327924(n,k) = Sum_{q|n} T(n,k) * (Sum_{s|n/q} mu(s)/phi(s*q)).

A327924 Square array read by ascending antidiagonals: T(m,n) is the number of non-isomorphic groups G such that G is the semidirect product of C_m and C_n, where C_m is a normal subgroup of G and C_n is a subgroup of G.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 4, 2, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 4, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 4, 1, 3, 1, 2, 1, 1, 1, 4, 1, 3, 1, 4, 1, 2, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Jianing Song, Sep 30 2019

Keywords

Comments

The semidirect product of C_m and C_n has group representation G = , where r is any number such that r^n == 1 (mod m). Two groups G = and G' = are isomorphic if and only if there exists some k, gcd(k,n) = 1 such that r^k == s (mod m), in which case f(x^i*y^j) = x^i*y^(k*j) is an isomorphic mapping from G to G'.
Given m, T(m,n) only depends on the value of gcd(n,psi(m)), psi = A002322 (Carmichael lambda). So each row is periodic with period psi(m). See A327925 for an alternative version.
Every number k occurs in the table. By Dirichlet's theorem on arithmetic progressions, there exists a prime p such that p == 1 (mod 2^(k-1)), then T(p,2^(k-1)) = d(gcd(2^(k-1),p-1)) = k (see the formula below). For example, T(5,4) = 3, T(17,8) = 4, T(17,16) = 5, T(97,32) = 6, T(193,64) = 7, ...
Row m and Row m' are the same if and only if (Z/mZ)* = (Z/m'Z)*, where (Z/mZ)* is the multiplicative group of integers modulo m. The if part is clear; for the only if part, note that the two sequences {(number of x in (Z/mZ)* such that x^n = 1)}{n>=1} and {T(m,n)}{n>=1} determine each other, and the structure of a finite abelian group G is uniquely determined by the sequence {(number of x in G such that x^n = 1)}{n>=1}. - _Jianing Song, May 16 2022

Examples

			  m/n  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20
   1   1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
   2   1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
   3   1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2
   4   1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2
   5   1  2  1  3  1  2  1  3  1  2  1  3  1  2  1  3  1  2  1  3
   6   1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2
   7   1  2  2  2  1  4  1  2  2  2  1  4  1  2  2  2  1  4  1  2
   8   1  4  1  4  1  4  1  4  1  4  1  4  1  4  1  4  1  4  1  4
   9   1  2  2  2  1  4  1  2  2  2  1  4  1  2  2  2  1  4  1  2
  10   1  2  1  3  1  2  1  3  1  2  1  3  1  2  1  3  1  2  1  3
  11   1  2  1  2  2  2  1  2  1  4  1  2  1  2  2  2  1  2  1  4
  12   1  4  1  4  1  4  1  4  1  4  1  4  1  4  1  4  1  4  1  4
  13   1  2  2  3  1  4  1  3  2  2  1  6  1  2  2  3  1  4  1  3
  14   1  2  2  2  1  4  1  2  2  2  1  4  1  2  2  2  1  4  1  2
  15   1  4  1  6  1  4  1  6  1  4  1  6  1  4  1  6  1  4  1  6
  16   1  4  1  6  1  4  1  6  1  4  1  6  1  4  1  6  1  4  1  6
  17   1  2  1  3  1  2  1  4  1  2  1  3  1  2  1  5  1  2  1  3
  18   1  2  2  2  1  4  1  2  2  2  1  4  1  2  2  2  1  4  1  2
  19   1  2  2  2  1  4  1  2  3  2  1  4  1  2  2  2  1  6  1  2
  20   1  4  1  6  1  4  1  6  1  4  1  6  1  4  1  6  1  4  1  6
Example shows that T(16,4) = 6: The semidirect product of C_16 and C_4 has group representation G = <x, y|x^16 = y^4 = 1, yxy^(-1) = x^r>, where r = 1, 3, 5, 7, 9, 11, 13, 15. Since 3^3 == 11 (mod 16), 5^3 == 13 (mod 16), <x, y|x^16 = y^4 = 1, yxy^(-1) = x^3> and <x, y|x^16 = y^4 = 1, yxy^(-1) = x^11> are isomorphic, <x, y|x^16 = y^4 = 1, yxy^(-1) = x^5> and <x, y|x^16 = y^4 = 1, yxy^(-1) = x^13> are isomorphic, giving a total of 6 non-isomorphic groups.
		

Crossrefs

Programs

  • PARI
    numord(n,q) = my(v=divisors(q),r=znstar(n)[2]); sum(i=1,#v,prod(j=1,#r,gcd(v[i],r[j]))*moebius(q/v[i]))
    T(m,n) = my(u=divisors(n)); sum(i=1,#u,numord(m,u[i])/eulerphi(u[i]))

Formula

T(m,n) = Sum_{d|n} (number of elements x such that ord(x,m) = d)/phi(d), where ord(x,m) is the multiplicative order of x modulo m, phi = A000010. There is a version to compute the terms more conveniently, see the links section. [Proof: let (Z/mZ)* denote the multiplicative group modulo m. For every d|n, the elements in (Z/mZ)* having order d are put into different equivalence classes, where each class is of the form {a^k: gcd(k,n)=1}. The size of each equivalence class is the number of different residues modulo d of the numbers that are coprime to n, which is phi(d). - Jianing Song, Sep 17 2022]
Equivalently, T(m,n) = Sum_{d|gcd(n,psi(m))} (number of elements x such that ord(x,m) = d)/phi(d). - Jianing Song, May 16 2022 [This is because the order of elements in (Z/mZ)* must divide psi(m). - Jianing Song, Sep 17 2022]
Let U(m,q) be the number of solutions to x^q == 1 (mod m):
T(m,1) = U(m,1) = 1;
T(m,2) = U(m,2) = A060594(m);
T(m,3) = (1/2)*U(m,3) + (1/2)*U(m,1) = (1/2)*A060839(m) + 1/2;
T(m,4) = (1/2)*U(m,4) + (1/2)*U(m,2) = (1/2)*A073103(m) + 1/2;
T(m,5) = (1/4)*U(m,5) + (3/4)*U(m,1) = (1/4)*A319099(m) + 3/4;
T(m,6) = (1/2)*U(m,6) + (1/2)*U(m,2) = (1/2)*A319100(m) + 1/2;
T(m,7) = (1/6)*U(m,7) + (5/6)*U(m,1) = (1/6)*A319101(m) + 5/6;
T(m,8) = (1/4)*U(m,8) + (1/4)*U(m,4) + (1/2)*U(m,2) = (1/4)*A247257(m) + (1/4)*A073103(m) + (1/2)*A060594(m);
T(m,9) = (1/6)*U(m,9) + (1/3)*U(m,3) + (1/2)*U(m,1);
T(m,10) = (1/4)*U(m,10) + (3/4)*U(m,2).
For odd primes p, T(p^e,n) = d(gcd(n,(p-1)*p^(e-1))), d = A000005; for e >= 3, T(2^e,n) = 2*(min{v2(n),e-2}+1) for even n and 1 for odd n, where v2 is the 2-adic valuation.

A327925 Irregular table read by rows: T(m,n) is the number of non-isomorphic groups G such that G is the semidirect product of C_m and C_n, where C_m is a normal subgroup of G and C_n is a subgroup of G, 1 <= n <= A002322(m).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 2, 2, 1, 4, 1, 4, 1, 2, 2, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 2, 2, 2, 1, 2, 1, 4, 1, 4, 1, 2, 2, 3, 1, 4, 1, 3, 2, 2, 1, 6, 1, 2, 2, 2, 1, 4, 1, 4, 1, 6, 1, 4, 1, 6, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 4, 1, 2, 3, 2, 1, 4, 1, 2, 2, 2, 1, 6
Offset: 1

Views

Author

Jianing Song, Sep 30 2019

Keywords

Comments

The semidirect product of C_m and C_n has group representation G = , where r is any number such that r^n == 1 (mod m). Two groups G = and G' = are isomorphic if and only if there exists some k, gcd(k,n) = 1 such that r^k == s (mod m), in which case f(x^i*y^j) = x^i*y^(k*j) is an isomorphic mapping from G to G'.
Given m, T(m,n) only depends on the value of gcd(n,psi(m)), psi = A002322 (Carmichael lambda). So each row of A327924 is periodic with period psi(m), so we have this for an alternative version.
Every number k occurs in the table. By Dirichlet's theorem on arithmetic progressions, there exists a prime p such that p == 1 (mod 2^(k-1)), then T(p,2^(k-1)) = d(gcd(2^(k-1),p-1)) = k (see the formula below). For example, T(5,4) = 3, T(17,8) = 4, T(17,16) = 5, T(97,32) = 6, T(193,64) = 7, ...
Row m and Row m' are the same if and only if (Z/mZ)* = (Z/m'Z)*, where (Z/mZ)* is the multiplicative group of integers modulo m. The if part is clear; for the only if part, note that the two sequences {(number of x in (Z/mZ)* such that x^n = 1)}{n>=1} and {T(m,n)}{n>=1} determine each other, and the structure of a finite abelian group G is uniquely determined by the sequence {(number of x in G such that x^n = 1)}{n>=1}. - _Jianing Song, May 16 2022

Examples

			Table starts
m = 1: 1;
m = 2: 1;
m = 3: 1, 2;
m = 4: 1, 2;
m = 5: 1, 2, 1, 3;
m = 6: 1, 2;
m = 7: 1, 2, 2, 2, 1, 4;
m = 8: 1, 4;
m = 9: 1, 2, 2, 2, 1, 4;
m = 10: 1, 2, 1, 3;
m = 11: 1, 2, 1, 2, 2, 2, 1, 2, 1, 4;
m = 12: 1, 4;
m = 13: 1, 2, 2, 3, 1, 4, 1, 3, 2, 2, 1, 6;
m = 14: 1, 2, 2, 2, 1, 4;
m = 15: 1, 4, 1, 6;
m = 16: 1, 4, 1, 6;
m = 17: 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5;
m = 18: 1, 2, 2, 2, 1, 4;
m = 19: 1, 2, 2, 2, 1, 4, 1, 2, 3, 2, 1, 4, 1, 2, 2, 2, 1, 6;
m = 20: 1, 4, 1, 6;
Example shows that T(21,6) = 6: The semidirect product of C_21 and C_6 has group representation G = <x, y|x^21 = y^6 = 1, yxy^(-1) = x^r>, where r = 1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20. Since 2^5 == 11 (mod 21), 4^5 == 16 (mod 21), 5^5 == 17 (mod 21), 10^5 == 19 (mod 21), there are actually four pairs of isomorphic groups, giving a total of 8 non-isomorphic groups.
		

Crossrefs

Programs

  • PARI
    numord(n,q) = my(v=divisors(q),r=znstar(n)[2]); sum(i=1,#v,prod(j=1,#r,gcd(v[i],r[j]))*moebius(q/v[i]))
    T(m,n) = my(u=divisors(n)); sum(i=1,#u,numord(m,u[i])/eulerphi(u[i]))
    Row(m) = my(l=if(m>2,znstar(m)[2][1],1), R=vector(l,n,T(m,n))); R

Formula

T(m,n) = Sum_{d|n} (number of elements x such that ord(x,m) = d)/phi(d), where ord(x,m) is the multiplicative order of x modulo m, phi = A000010.
Equivalently, T(m,n) = Sum_{d|gcd(n,psi(m))} (number of elements x such that ord(x,m) = d)/phi(d). - Jianing Song, May 16 2022
For odd primes p, T(p^e,n) = d(gcd(n,(p-1)*p^(e-1))) = A051194((p-1)*p^(e-1),n), d = A000005; for e >= 3, T(2^e,n) = 2*(v2(n)+1) for even n and 1 for odd n, where v2 is the 2-adic valuation.
Previous Showing 11-14 of 14 results.