A293483
The number of 6th powers in the multiplicative group modulo n.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 5, 1, 2, 1, 2, 2, 8, 1, 3, 2, 1, 5, 11, 1, 10, 2, 3, 1, 14, 2, 5, 4, 5, 8, 2, 1, 6, 3, 2, 2, 20, 1, 7, 5, 2, 11, 23, 2, 7, 10, 8, 2, 26, 3, 10, 1, 3, 14, 29, 2, 10, 5, 1, 8, 4, 5, 11, 8, 11, 2, 35, 1, 12, 6, 10, 3, 5, 2, 13, 4, 9, 20
Offset: 1
-
A293483 := proc(n)
local r,j;
r := {} ;
for j from 1 to n do
if igcd(j,n)= 1 then
r := r union { modp(j &^ 6,n) } ;
end if;
end do:
nops(r) ;
end proc:
seq(A293483(n),n=1..120) ;
-
a[n_] := EulerPhi[n]/Count[Range[0, n - 1]^6 - 1, k_ /; Divisible[k, n]];
Array[a, 100] (* Jean-François Alcover, May 24 2023 *)
f[p_, e_] := (p - 1)*p^(e - 1)/If[Mod[p, 6] == 1, 6, 2]; f[2, e_] := If[e <= 3, 1, 2^(e - 3)]; f[3, e_] := If[e <= 2, 1, 3^(e - 2)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 10 2023 *)
A354057
Square array read by ascending antidiagonals: T(n,k) is the number of solutions to x^k == 1 (mod n).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 4, 1, 2, 1, 1, 1, 4, 3, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 3, 4, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 6, 1, 4, 1, 2, 1, 1, 1, 4, 1, 4, 1, 4, 1, 2, 1, 2, 1, 1, 1
Offset: 1
n/k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
4 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
5 1 2 1 4 1 2 1 4 1 2 1 4 1 2 1 4 1 2 1 4
6 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
7 1 2 3 2 1 6 1 2 3 2 1 6 1 2 3 2 1 6 1 2
8 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4
9 1 2 3 2 1 6 1 2 3 2 1 6 1 2 3 2 1 6 1 2
10 1 2 1 4 1 2 1 4 1 2 1 4 1 2 1 4 1 2 1 4
11 1 2 1 2 5 2 1 2 1 10 1 2 1 2 5 2 1 2 1 10
12 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4
13 1 2 3 4 1 6 1 4 3 2 1 12 1 2 3 4 1 6 1 4
14 1 2 3 2 1 6 1 2 3 2 1 6 1 2 3 2 1 6 1 2
15 1 4 1 8 1 4 1 8 1 4 1 8 1 4 1 8 1 4 1 8
16 1 4 1 8 1 4 1 8 1 4 1 8 1 4 1 8 1 4 1 8
17 1 2 1 4 1 2 1 8 1 2 1 4 1 2 1 16 1 2 1 4
18 1 2 3 2 1 6 1 2 3 2 1 6 1 2 3 2 1 6 1 2
19 1 2 3 2 1 6 1 2 9 2 1 6 1 2 3 2 1 18 1 2
20 1 4 1 8 1 4 1 8 1 4 1 8 1 4 1 8 1 4 1 8
Applying Moebius transform to the rows gives
A354059.
Applying Moebius transform to the columns gives
A354058.
-
T(n,k)=my(Z=znstar(n)[2]); prod(i=1, #Z, gcd(k, Z[i]))
A327924
Square array read by ascending antidiagonals: T(m,n) is the number of non-isomorphic groups G such that G is the semidirect product of C_m and C_n, where C_m is a normal subgroup of G and C_n is a subgroup of G.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 4, 2, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 4, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 4, 1, 3, 1, 2, 1, 1, 1, 4, 1, 3, 1, 4, 1, 2, 1, 2, 1, 1, 1
Offset: 1
m/n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
4 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
5 1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 3
6 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
7 1 2 2 2 1 4 1 2 2 2 1 4 1 2 2 2 1 4 1 2
8 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4
9 1 2 2 2 1 4 1 2 2 2 1 4 1 2 2 2 1 4 1 2
10 1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 3
11 1 2 1 2 2 2 1 2 1 4 1 2 1 2 2 2 1 2 1 4
12 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4
13 1 2 2 3 1 4 1 3 2 2 1 6 1 2 2 3 1 4 1 3
14 1 2 2 2 1 4 1 2 2 2 1 4 1 2 2 2 1 4 1 2
15 1 4 1 6 1 4 1 6 1 4 1 6 1 4 1 6 1 4 1 6
16 1 4 1 6 1 4 1 6 1 4 1 6 1 4 1 6 1 4 1 6
17 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3
18 1 2 2 2 1 4 1 2 2 2 1 4 1 2 2 2 1 4 1 2
19 1 2 2 2 1 4 1 2 3 2 1 4 1 2 2 2 1 6 1 2
20 1 4 1 6 1 4 1 6 1 4 1 6 1 4 1 6 1 4 1 6
Example shows that T(16,4) = 6: The semidirect product of C_16 and C_4 has group representation G = <x, y|x^16 = y^4 = 1, yxy^(-1) = x^r>, where r = 1, 3, 5, 7, 9, 11, 13, 15. Since 3^3 == 11 (mod 16), 5^3 == 13 (mod 16), <x, y|x^16 = y^4 = 1, yxy^(-1) = x^3> and <x, y|x^16 = y^4 = 1, yxy^(-1) = x^11> are isomorphic, <x, y|x^16 = y^4 = 1, yxy^(-1) = x^5> and <x, y|x^16 = y^4 = 1, yxy^(-1) = x^13> are isomorphic, giving a total of 6 non-isomorphic groups.
-
numord(n,q) = my(v=divisors(q),r=znstar(n)[2]); sum(i=1,#v,prod(j=1,#r,gcd(v[i],r[j]))*moebius(q/v[i]))
T(m,n) = my(u=divisors(n)); sum(i=1,#u,numord(m,u[i])/eulerphi(u[i]))
A327925
Irregular table read by rows: T(m,n) is the number of non-isomorphic groups G such that G is the semidirect product of C_m and C_n, where C_m is a normal subgroup of G and C_n is a subgroup of G, 1 <= n <= A002322(m).
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 2, 2, 1, 4, 1, 4, 1, 2, 2, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 2, 2, 2, 1, 2, 1, 4, 1, 4, 1, 2, 2, 3, 1, 4, 1, 3, 2, 2, 1, 6, 1, 2, 2, 2, 1, 4, 1, 4, 1, 6, 1, 4, 1, 6, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 4, 1, 2, 3, 2, 1, 4, 1, 2, 2, 2, 1, 6
Offset: 1
Table starts
m = 1: 1;
m = 2: 1;
m = 3: 1, 2;
m = 4: 1, 2;
m = 5: 1, 2, 1, 3;
m = 6: 1, 2;
m = 7: 1, 2, 2, 2, 1, 4;
m = 8: 1, 4;
m = 9: 1, 2, 2, 2, 1, 4;
m = 10: 1, 2, 1, 3;
m = 11: 1, 2, 1, 2, 2, 2, 1, 2, 1, 4;
m = 12: 1, 4;
m = 13: 1, 2, 2, 3, 1, 4, 1, 3, 2, 2, 1, 6;
m = 14: 1, 2, 2, 2, 1, 4;
m = 15: 1, 4, 1, 6;
m = 16: 1, 4, 1, 6;
m = 17: 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5;
m = 18: 1, 2, 2, 2, 1, 4;
m = 19: 1, 2, 2, 2, 1, 4, 1, 2, 3, 2, 1, 4, 1, 2, 2, 2, 1, 6;
m = 20: 1, 4, 1, 6;
Example shows that T(21,6) = 6: The semidirect product of C_21 and C_6 has group representation G = <x, y|x^21 = y^6 = 1, yxy^(-1) = x^r>, where r = 1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20. Since 2^5 == 11 (mod 21), 4^5 == 16 (mod 21), 5^5 == 17 (mod 21), 10^5 == 19 (mod 21), there are actually four pairs of isomorphic groups, giving a total of 8 non-isomorphic groups.
-
numord(n,q) = my(v=divisors(q),r=znstar(n)[2]); sum(i=1,#v,prod(j=1,#r,gcd(v[i],r[j]))*moebius(q/v[i]))
T(m,n) = my(u=divisors(n)); sum(i=1,#u,numord(m,u[i])/eulerphi(u[i]))
Row(m) = my(l=if(m>2,znstar(m)[2][1],1), R=vector(l,n,T(m,n))); R
Comments