cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A319100 Number of solutions to x^6 == 1 (mod n).

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 6, 4, 6, 2, 2, 4, 6, 6, 4, 4, 2, 6, 6, 4, 12, 2, 2, 8, 2, 6, 6, 12, 2, 4, 6, 4, 4, 2, 12, 12, 6, 6, 12, 8, 2, 12, 6, 4, 12, 2, 2, 8, 6, 2, 4, 12, 2, 6, 4, 24, 12, 2, 2, 8, 6, 6, 36, 4, 12, 4, 6, 4, 4, 12, 2, 24, 6, 6, 4, 12, 12, 12, 6, 8, 6, 2
Offset: 1

Views

Author

Jianing Song, Sep 10 2018

Keywords

Comments

All terms are 3-smooth. a(n) is even for n > 2. Those n such that a(n) = 2 are in A066501.

Examples

			Solutions to x^6 == 1 (mod 13): x == 1, 3, 4, 9, 10, 12 (mod 13).
Solutions to x^6 == 1 (mod 27): x == 1, 8, 10, 17, 19, 26 (mod 27) (x == 1, 8 (mod 9)).
Solutions to x^6 == 1 (mod 37): x == 1, 10, 11, 26, 27, 36 (mod 37).
		

Crossrefs

Number of solutions to x^k == 1 (mod n): A060594 (k=2), A060839 (k=3), A073103 (k=4), A319099 (k=5), this sequence (k=6), A319101 (k=7), A247257 (k=8).
Mobius transform gives A307381.

Programs

  • PARI
    a(n)=my(Z=znstar(n)[2]); prod(i=1, #Z, gcd(6, Z[i]))

Formula

Multiplicative with a(2) = 1, a(4) = 2, a(2^e) = 4 for e >= 3; a(3) = 2, a(3^e) = 6 if e >= 2; for other primes p, a(p^e) = 6 if p == 1 (mod 6), a(p^e) = 2 if p == 5 (mod 6).
If the multiplicative group of integers modulo n is isomorphic to C_{k_1} x C_{k_2} x ... x C_{k_m}, where k_i divides k_j for i < j; then a(n) = Product_{i=1..m} gcd(6, k_i).
a(n) = A060594(n)*A060839(n).
For n > 2, a(n) = A060839(n)*2^A046072(n).
a(n) = A060594(n) iff n is not divisible by 9 and no prime factor of n is congruent to 1 mod 6, that is, n in A088232.
a(n) = A000010(n)/A293483(n). - Jianing Song, Nov 10 2019
Sum_{k=1..n} a(k) ~ c * n * log(n)^3, where c = (1/Pi^4) * Product_{p prime == 1 (mod 6)} (1 - (12*p-4)/(p+1)^3) = 0.0075925601... (Finch et al., 2010). - Amiram Eldar, Mar 26 2021

A293482 The number of 5th powers in the multiplicative group modulo n.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 2, 4, 12, 6, 8, 8, 16, 6, 18, 8, 12, 2, 22, 8, 4, 12, 18, 12, 28, 8, 6, 16, 4, 16, 24, 12, 36, 18, 24, 16, 8, 12, 42, 4, 24, 22, 46, 16, 42, 4, 32, 24, 52, 18, 8, 24, 36, 28, 58, 16, 12, 6, 36, 32, 48, 4, 66, 32, 44, 24, 14, 24, 72, 36, 8, 36, 12, 24, 78, 32, 54, 8, 82, 24
Offset: 1

Views

Author

R. J. Mathar, Oct 10 2017

Keywords

Comments

The size of the set of numbers j^5 mod n, gcd(j,n)=1, 1 <= j <= n.
A000010(n) / a(n) is another multiplicative integer sequence.

Crossrefs

The number of k-th powers in the multiplicative group modulo n: A046073 (k=2), A087692 (k=3), A250207 (k=4), this sequence (k=5), A293483 (k=6), A293484 (k=7), A293485 (k=8).

Programs

  • Maple
    A293482 := proc(n)
        local r,j;
        r := {} ;
        for j from 1 to n do
            if igcd(j,n)= 1 then
                r := r union { modp(j &^ 5,n) } ;
            end if;
        end do:
        nops(r) ;
    end proc:
    seq(A293482(n),n=1..120) ;
  • Mathematica
    a[n_] := Module[{r, j}, r = {}; For[j = 1, j <= n, j++, If[GCD[j, n] == 1, r = r ~Union~ {PowerMod[j, 5, n]}] ]; Length[r]];
    Table[a[n], {n, 1, 120}] (* Jean-François Alcover, Feb 14 2023, after R. J. Mathar *)
    f[p_, e_] := (p - 1)*p^(e - 1)/If[Mod[p, 5] == 1, 5, 1]; f[2, e_] := 2^(e - 1); f[2, 1] = 1; f[5, e_] := 4*5^(e-2); f[5, 1] = 4; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 10 2023 *)

Formula

Conjecture: a(2^e) = 1 for e <= 1; a(2^e) = 2^(e-1) for e >= 1; a(5)=4; a(5^e) = 4*5^(e-2) for e > 1; a(p^e) = (p-1)*p^(e-1) for p == {2,3,4} (mod 5); a(p^e) = (p-1)*p^(e-1)/5 for p == 1 (mod 5). - R. J. Mathar, Oct 13 2017
a(n) = A000010(n)/A319099(n). This implies that the conjecture above is true. - Jianing Song, Nov 10 2019

A293484 The number of 7th powers in the multiplicative group modulo n.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6, 18, 8, 12, 10, 22, 8, 20, 12, 18, 12, 4, 8, 30, 16, 20, 16, 24, 12, 36, 18, 24, 16, 40, 12, 6, 20, 24, 22, 46, 16, 6, 20, 32, 24, 52, 18, 40, 24, 36, 4, 58, 16, 60, 30, 36, 32, 48, 20, 66, 32, 44, 24, 10, 24, 72, 36, 40, 36
Offset: 1

Views

Author

R. J. Mathar, Oct 10 2017

Keywords

Comments

The size of the set of numbers j^7 mod n, gcd(j,n)=1, 1 <= j <= n.
A000010(n) / a(n) is another multiplicative integer sequence (size of the kernel of the isomorphism of the multiplicative group modulo n to the multiplicative group of 7th powers modulo n).

Crossrefs

The number of k-th powers in the multiplicative group modulo n: A046073 (k=2), A087692 (k=3), A250207 (k=4), A293482 (k=5), A293483 (k=6), this sequence (k=7), A293485 (k=8).

Programs

  • Maple
    A293484 := proc(n)
        local r,j;
        r := {} ;
        for j from 1 to n do
            if igcd(j,n)= 1 then
                r := r union { modp(j &^ 7,n) } ;
            end if;
        end do:
        nops(r) ;
    end proc:
    seq(A293484(n),n=1..120) ;
  • Mathematica
    a[n_] := EulerPhi[n]/Count[Range[0, n - 1]^7 - 1, k_ /; Divisible[k, n]];
    Array[a, 100] (* Jean-François Alcover, May 24 2023 *)
    f[p_, e_] := (p-1)*p^(e-1)/If[Mod[p, 7] == 1, 7, 1]; f[2, e_] := 2^(e-1); f[7, 1] = 6; f[7, e_] := 6*7^(e-2); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 10 2023 *)

Formula

Conjecture: a(2^e) = 1 for e <= 1; a(2^e) = 2^(e-1) for e >= 1; a(7^e) = 6 for e=1; a(7^e) = 6*7^(e-2) for e >= 2; a(p^e) = (p-1)*p^(e-1) for p == {2,3,4,5,6} (mod 7); a(p^e) = (p-1)*p^(e-1)/7 for p == 1 (mod 7). - R. J. Mathar, Oct 13 2017
a(n) = A000010(n)/A319101(n). This implies that the conjecture above is true. - Jianing Song, Nov 10 2019

A293485 The number of 8th powers in the multiplicative group modulo n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 5, 1, 3, 3, 1, 1, 2, 3, 9, 1, 3, 5, 11, 1, 5, 3, 9, 3, 7, 1, 15, 1, 5, 2, 3, 3, 9, 9, 3, 1, 5, 3, 21, 5, 3, 11, 23, 1, 21, 5, 2, 3, 13, 9, 5, 3, 9, 7, 29, 1, 15, 15, 9, 2, 3, 5, 33, 2, 11, 3, 35, 3, 9, 9, 5, 9, 15, 3, 39, 1, 27, 5, 41, 3, 2
Offset: 1

Views

Author

R. J. Mathar, Oct 10 2017

Keywords

Comments

The size of the set of numbers j^8 mod n, gcd(j,n)=1, 1<=j<=n.

Crossrefs

The number of k-th powers in the multiplicative group modulo n: A046073 (k=2), A087692 (k=3), A250207 (k=4), A293482 (k=5), A293483 (k=6), A293484 (k=7), this sequence (k=8).
Cf. A085311, A247257 (order of the kernel isomorphism of Z/nZ to this group), A000010.

Programs

  • Maple
    A293485 := proc(n)
        local r,j;
        r := {} ;
        for j from 1 to n do
            if igcd(j,n)= 1 then
                r := r union { modp(j &^ 8,n) } ;
            end if;
        end do:
        nops(r) ;
    end proc:
    seq(A293485(n),n=1..120) ;
  • Mathematica
    a[n_] := EulerPhi[n]/Count[Range[0, n - 1]^8 - 1, k_ /; Divisible[k, n]];
    Array[a, 100] (* Jean-François Alcover, May 24 2023 *)
    f[p_, e_] := (p - 1)*p^(e - 1)/Switch[Mod[p, 8], 1, 8, 5, 4, , 2]; f[2, e] := If[e <= 4, 1, 2^(e - 5)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 10 2023 *)
  • PARI
    \\ The following two functions by Charles R Greathouse IV, from A247257:
    g(p, e) = if(p==2, 2^min(e-1, 4), if(p%4==3, 2, if(p%8==5, 4, 8)));
    A247257(n) = my(f=factor(n)); prod(i=1, #f~, g(f[i, 1], f[i, 2]));
    A293485(n) = (eulerphi(n)/A247257(n)); \\ Antti Karttunen, Dec 05 2017

Formula

A000010(n) / a(n) = A247257(n).
Multiplicative with a(2^e) = 1 for e<=4, a(2^e) = 2^(e-5) for e>=5; a(p^e) = (p-1)*p^(e-1)/8 for p == 1 (mod 8); a(p^e) = (p-1)*p^(e-1)/4 for p == 5 (mod 8); a(p^e) = (p-1)*p^(e-1)/2 for p == {3,7} (mod 8). - R. J. Mathar, Oct 15 2017 [corrected by Georg Fischer, Jul 21 2022]
Showing 1-4 of 4 results.