A293482 The number of 5th powers in the multiplicative group modulo n.
1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 2, 4, 12, 6, 8, 8, 16, 6, 18, 8, 12, 2, 22, 8, 4, 12, 18, 12, 28, 8, 6, 16, 4, 16, 24, 12, 36, 18, 24, 16, 8, 12, 42, 4, 24, 22, 46, 16, 42, 4, 32, 24, 52, 18, 8, 24, 36, 28, 58, 16, 12, 6, 36, 32, 48, 4, 66, 32, 44, 24, 14, 24, 72, 36, 8, 36, 12, 24, 78, 32, 54, 8, 82, 24
Offset: 1
Links
- R. J. Mathar, Table of n, a(n) for n = 1..7548
- R. J. Mathar, Size of the set of residues of integer powers of fixed exponent, 2017.
- Samer Seraj, Counting general power residues, Not. Numb. Th. Discr. Math. 28 (4) (2022) 730-743.
- Samer Seraj, Resolution of Mathar's conjectures on counting power residues, INTEGERS 23 (2023) #A62.
Crossrefs
Programs
-
Maple
A293482 := proc(n) local r,j; r := {} ; for j from 1 to n do if igcd(j,n)= 1 then r := r union { modp(j &^ 5,n) } ; end if; end do: nops(r) ; end proc: seq(A293482(n),n=1..120) ;
-
Mathematica
a[n_] := Module[{r, j}, r = {}; For[j = 1, j <= n, j++, If[GCD[j, n] == 1, r = r ~Union~ {PowerMod[j, 5, n]}] ]; Length[r]]; Table[a[n], {n, 1, 120}] (* Jean-François Alcover, Feb 14 2023, after R. J. Mathar *) f[p_, e_] := (p - 1)*p^(e - 1)/If[Mod[p, 5] == 1, 5, 1]; f[2, e_] := 2^(e - 1); f[2, 1] = 1; f[5, e_] := 4*5^(e-2); f[5, 1] = 4; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 10 2023 *)
Formula
Conjecture: a(2^e) = 1 for e <= 1; a(2^e) = 2^(e-1) for e >= 1; a(5)=4; a(5^e) = 4*5^(e-2) for e > 1; a(p^e) = (p-1)*p^(e-1) for p == {2,3,4} (mod 5); a(p^e) = (p-1)*p^(e-1)/5 for p == 1 (mod 5). - R. J. Mathar, Oct 13 2017
a(n) = A000010(n)/A319099(n). This implies that the conjecture above is true. - Jianing Song, Nov 10 2019
Comments