A327053
Number of T_0 (costrict) set-systems covering n vertices where every two vertices appear together in some edge (cointersecting).
Original entry on oeis.org
1, 1, 3, 62, 24710, 2076948136, 9221293198653529144, 170141182628636920684331812494864430896
Offset: 0
The a(1) = 1 through a(2) = 3 set-systems:
{} {{1}} {{1},{1,2}}
{{2},{1,2}}
{{1},{2},{1,2}}
The a(3) = 62 set-systems:
1 2 123 1 2 3 123 1 2 12 13 23 1 2 3 12 13 23 1 2 3 12 13 23 123
1 3 123 1 12 13 23 1 2 3 12 123 1 2 3 12 13 123
2 3 123 1 2 12 123 1 2 3 13 123 1 2 3 12 23 123
1 12 123 1 2 13 123 1 2 3 23 123 1 2 3 13 23 123
1 13 123 1 2 23 123 1 3 12 13 23 1 2 12 13 23 123
12 13 23 1 3 12 123 2 3 12 13 23 1 3 12 13 23 123
2 12 123 1 3 13 123 1 2 12 13 123 2 3 12 13 23 123
2 23 123 1 3 23 123 1 2 12 23 123
3 13 123 2 12 13 23 1 2 13 23 123
3 23 123 2 3 12 123 1 3 12 13 123
12 13 123 2 3 13 123 1 3 12 23 123
12 23 123 2 3 23 123 1 3 13 23 123
13 23 123 3 12 13 23 2 3 12 13 123
1 12 13 123 2 3 12 23 123
1 12 23 123 2 3 13 23 123
1 13 23 123 1 12 13 23 123
2 12 13 123 2 12 13 23 123
2 12 23 123 3 12 13 23 123
2 13 23 123
3 12 13 123
3 12 23 123
3 13 23 123
12 13 23 123
The pairwise intersecting case is
A319774.
The BII-numbers of these set-systems are the intersection of
A326947 and
A326853.
The non-covering version is
A327052.
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&UnsameQ@@dual[#]&&stableQ[dual[#],Intersection[#1,#2]=={}&]&]],{n,0,3}]
A326854
BII-numbers of T_0 (costrict), pairwise intersecting set-systems where every two vertices appear together in some edge (cointersecting).
Original entry on oeis.org
0, 1, 2, 5, 6, 8, 17, 24, 34, 40, 52, 69, 70, 81, 84, 85, 88, 98, 100, 102, 104, 112, 116, 120, 128, 257, 384, 514, 640, 772, 1029, 1030, 1281, 1284, 1285, 1408, 1538, 1540, 1542, 1664, 1792, 1796, 1920, 2056, 2176, 2320, 2592, 2880, 3120, 3152, 3168, 3184
Offset: 1
The sequence of all set-systems that are pairwise intersecting, cointersecting, and costrict, together with their BII-numbers, begins:
0: {}
1: {{1}}
2: {{2}}
5: {{1},{1,2}}
6: {{2},{1,2}}
8: {{3}}
17: {{1},{1,3}}
24: {{3},{1,3}}
34: {{2},{2,3}}
40: {{3},{2,3}}
52: {{1,2},{1,3},{2,3}}
69: {{1},{1,2},{1,2,3}}
70: {{2},{1,2},{1,2,3}}
81: {{1},{1,3},{1,2,3}}
84: {{1,2},{1,3},{1,2,3}}
85: {{1},{1,2},{1,3},{1,2,3}}
88: {{3},{1,3},{1,2,3}}
98: {{2},{2,3},{1,2,3}}
100: {{1,2},{2,3},{1,2,3}}
102: {{2},{1,2},{2,3},{1,2,3}}
These set-systems are counted by
A319774 (covering).
Cf.
A029931,
A048793,
A051185,
A305843,
A319765,
A326031,
A327037,
A327038,
A327041,
A327052,
A327053.
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Select[Range[0,10000],UnsameQ@@dual[bpe/@bpe[#]]&&stableQ[bpe/@bpe[#],Intersection[#1,#2]=={}&]&&stableQ[dual[bpe/@bpe[#]],Intersection[#1,#2]=={}&]&]
A327061
BII-numbers of pairwise intersecting set-systems where every two covered vertices appear together in some edge (cointersecting).
Original entry on oeis.org
0, 1, 2, 4, 5, 6, 8, 16, 17, 24, 32, 34, 40, 52, 64, 65, 66, 68, 69, 70, 72, 80, 81, 84, 85, 88, 96, 98, 100, 102, 104, 112, 116, 120, 128, 256, 257, 384, 512, 514, 640, 772, 1024, 1025, 1026, 1028, 1029, 1030, 1152, 1280, 1281, 1284, 1285, 1408, 1536, 1538
Offset: 1
The sequence of all pairwise intersecting, cointersecting set-systems together with their BII-numbers begins:
0: {}
1: {{1}}
2: {{2}}
4: {{1,2}}
5: {{1},{1,2}}
6: {{2},{1,2}}
8: {{3}}
16: {{1,3}}
17: {{1},{1,3}}
24: {{3},{1,3}}
32: {{2,3}}
34: {{2},{2,3}}
40: {{3},{2,3}}
52: {{1,2},{1,3},{2,3}}
64: {{1,2,3}}
65: {{1},{1,2,3}}
66: {{2},{1,2,3}}
68: {{1,2},{1,2,3}}
69: {{1},{1,2},{1,2,3}}
70: {{2},{1,2},{1,2,3}}
The unlabeled multiset partition version is
A319765.
These set-systems are counted by
A327037 (covering) and
A327038 (not covering).
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Select[Range[0,100],stableQ[bpe/@bpe[#],Intersection[#1,#2]=={}&]&&stableQ[dual[bpe/@bpe[#]],Intersection[#1,#2]=={}&]&]
Comments