A371167
Positive integers with more divisors (A000005) than distinct divisors of prime indices (A370820).
Original entry on oeis.org
1, 2, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 27, 28, 30, 32, 33, 34, 36, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 60, 62, 63, 64, 66, 68, 70, 72, 75, 76, 78, 80, 81, 82, 84, 85, 88, 90, 92, 93, 96, 98, 99, 100, 102, 104, 105, 108, 110
Offset: 1
The prime indices of 814 are {1,5,12}, and there are 8 divisors (1,2,11,22,37,74,407,814) and 7 distinct divisors of prime indices (1,2,3,4,5,6,12), so 814 is in the sequence.
The prime indices of 1859 are {5,6,6}, and there are 6 divisors (1,11,13,143,169,1859) and 5 distinct divisors of prime indices (1,2,3,5,6), so 1859 is in the sequence.
The terms together with their prime indices begin:
1: {}
2: {1}
4: {1,1}
6: {1,2}
8: {1,1,1}
9: {2,2}
10: {1,3}
12: {1,1,2}
14: {1,4}
15: {2,3}
16: {1,1,1,1}
18: {1,2,2}
20: {1,1,3}
21: {2,4}
22: {1,5}
24: {1,1,1,2}
25: {3,3}
27: {2,2,2}
28: {1,1,4}
30: {1,2,3}
For (equal to) instead of (greater than) we get
A371165, counted by
A371172.
For (less than) instead of (greater than) we get
A371166.
A001221 counts distinct prime factors.
A355731 counts choices of a divisor of each prime index, firsts
A355732.
-
Select[Range[100],Length[Divisors[#]]>Length[Union @@ Divisors/@PrimePi/@First/@If[#==1,{},FactorInteger[#]]]&]
A319877
Numbers whose product of prime indices (A003963) is a square of a squarefree number (A062503).
Original entry on oeis.org
1, 7, 9, 14, 18, 23, 25, 28, 36, 46, 50, 56, 72, 92, 97, 100, 112, 121, 144, 151, 161, 169, 175, 183, 184, 185, 194, 195, 200, 207, 224, 225, 227, 242, 288, 289, 302, 322, 338, 350, 366, 368, 370, 388, 390, 400, 414, 448, 450, 454, 484, 541, 576, 578, 604, 644
Offset: 1
The sequence of multiset multisystems whose MM-numbers belong to the sequence begins:
1: {}
7: {{1,1}}
9: {{1},{1}}
14: {{},{1,1}}
18: {{},{1},{1}}
23: {{2,2}}
25: {{2},{2}}
28: {{},{},{1,1}}
36: {{},{},{1},{1}}
46: {{},{2,2}}
50: {{},{2},{2}}
56: {{},{},{},{1,1}}
72: {{},{},{},{1},{1}}
92: {{},{},{2,2}}
97: {{3,3}}
100: {{},{},{2},{2}}
112: {{},{},{},{},{1,1}}
121: {{3},{3}}
144: {{},{},{},{},{1},{1}}
151: {{1,1,2,2}}
161: {{1,1},{2,2}}
169: {{1,2},{1,2}}
175: {{2},{2},{1,1}}
183: {{1},{1,2,2}}
184: {{},{},{},{2,2}}
185: {{2},{1,1,2}}
194: {{},{3,3}}
195: {{1},{2},{1,2}}
200: {{},{},{},{2},{2}}
Cf.
A003963,
A005117,
A005176,
A062503,
A064573,
A072774,
A295193,
A302505,
A319878,
A319899,
A320325,
A322526,
A322527,
A322530.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Or[#==1,SameQ[##,2]&@@Last/@FactorInteger[Times@@primeMS[#]]]&]
A319878
Odd numbers whose product of prime indices (A003963) is a square of a squarefree number (A062503).
Original entry on oeis.org
1, 7, 9, 23, 25, 97, 121, 151, 161, 169, 175, 183, 185, 195, 207, 225, 227, 289, 541, 661, 679, 687, 781, 841, 847, 873, 957, 961, 1009, 1089, 1193, 1427, 1563, 1589, 1681, 1819, 1849, 1879, 1895, 2023, 2043, 2167, 2193, 2209, 2231, 2425, 2437, 2585, 2601
Offset: 1
The sequence of multiset partitions whose MM-numbers belong to the sequence begins:
1: {}
7: {{1,1}}
9: {{1},{1}}
23: {{2,2}}
25: {{2},{2}}
97: {{3,3}}
121: {{3},{3}}
151: {{1,1,2,2}}
161: {{1,1},{2,2}}
169: {{1,2},{1,2}}
175: {{2},{2},{1,1}}
183: {{1},{1,2,2}}
185: {{2},{1,1,2}}
195: {{1},{2},{1,2}}
207: {{1},{1},{2,2}}
225: {{1},{1},{2},{2}}
227: {{4,4}}
289: {{4},{4}}
541: {{1,1,3,3}}
661: {{5,5}}
679: {{1,1},{3,3}}
687: {{1},{1,3,3}}
781: {{3},{1,1,3}}
841: {{1,3},{1,3}}
847: {{1,1},{3},{3}}
873: {{1},{1},{3,3}}
957: {{1},{3},{1,3}}
961: {{5},{5}}
Cf.
A003963,
A005117,
A005176,
A062503,
A064573,
A072774,
A295193,
A302505,
A319877,
A319899,
A320325,
A322526,
A322527,
A322530.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1,100,2],Or[#==1,SameQ[##,2]&@@Last/@FactorInteger[Times@@primeMS[#]]]&]
A371287
Numbers whose product of prime indices has exactly two distinct prime factors.
Original entry on oeis.org
13, 15, 26, 29, 30, 33, 35, 37, 39, 43, 45, 47, 51, 52, 55, 58, 60, 61, 65, 66, 69, 70, 71, 73, 74, 75, 77, 78, 79, 85, 86, 87, 89, 90, 91, 93, 94, 95, 99, 101, 102, 104, 105, 107, 110, 111, 116, 117, 119, 120, 122, 123, 129, 130, 132, 135, 137, 138, 139, 140
Offset: 1
The terms together with their prime indices begin:
13: {6}
15: {2,3}
26: {1,6}
29: {10}
30: {1,2,3}
33: {2,5}
35: {3,4}
37: {12}
39: {2,6}
43: {14}
45: {2,2,3}
47: {15}
51: {2,7}
52: {1,1,6}
55: {3,5}
58: {1,10}
60: {1,1,2,3}
Counting divisors (not factors) gives
A371127, positions of 2's in
A370820.
A001221 counts distinct prime factors.
A003963 gives product of prime indices.
A076610 lists products of primes of prime index.
A355731 counts choices of a divisor of each prime index, firsts
A355732.
A355741 counts choices of a prime factor of each prime index.
Comments