A320664
Number of non-isomorphic multiset partitions of weight n with all parts of odd size.
Original entry on oeis.org
1, 1, 2, 6, 12, 30, 82, 198, 533, 1459, 4039, 11634, 34095, 102520, 316456, 995709, 3215552, 10591412, 35633438, 122499429, 428988392, 1532929060, 5579867442, 20677066725, 78027003260, 299413756170, 1168536196157, 4635420192861, 18678567555721, 76451691937279, 317625507668759
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(4) = 12 multiset partitions with all parts of odd size:
{{1}} {{1},{1}} {{1,1,1}} {{1},{1,1,1}}
{{1},{2}} {{1,2,2}} {{1},{1,2,2}}
{{1,2,3}} {{1},{2,2,2}}
{{1},{1},{1}} {{1},{2,3,3}}
{{1},{2},{2}} {{1},{2,3,4}}
{{1},{2},{3}} {{2},{1,2,2}}
{{3},{1,2,3}}
{{1},{1},{1},{1}}
{{1},{1},{2},{2}}
{{1},{2},{2},{2}}
{{1},{2},{3},{3}}
{{1},{2},{3},{4}}
-
\\ See links in A339645 for combinatorial species functions.
seq(n)={my(A=symGroupSeries(n)); NumUnlabeledObjsSeq(sCartProd(sExp(A), sExp((A-subst(A,x,-x))/2)))} \\ Andrew Howroyd, Jan 17 2023
-
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
J(q, t, k, y)={1/prod(j=1, #q, my(s=q[j], g=gcd(s,t)); (1 + O(x*x^k) - y^(s/g)*x^(s*t/g))^g)}
K(q, t, k) = Vec(J(q,t,k,1)-J(q,t,k,-1), -k)/2
a(n)={my(s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(x*Ser(sum(t=1, n, K(q, t, n)/t))), n)); s/n!} \\ Andrew Howroyd, Jan 17 2023
A330057
Number of set-systems covering n vertices with no singletons or endpoints.
Original entry on oeis.org
1, 0, 0, 5, 1703, 66954642, 144115175199102143, 1329227995784915808340204290157341181, 226156424291633194186662080095093568664788471116325389572604136316742486364
Offset: 0
The a(3) = 5 set-systems:
{{1,2},{1,3},{2,3}}
{{1,2},{1,3},{1,2,3}}
{{1,2},{2,3},{1,2,3}}
{{1,3},{2,3},{1,2,3}}
{{1,2},{1,3},{2,3},{1,2,3}}
The version for non-isomorphic set-systems is
A330055 (by weight).
The non-covering version is
A330056.
Set-systems with no singletons are
A016031.
Set-systems with no endpoints are
A330059.
Non-isomorphic set-systems with no singletons are
A306005 (by weight).
Non-isomorphic set-systems with no endpoints are
A330054 (by weight).
Non-isomorphic set-systems counted by vertices are
A000612.
Non-isomorphic set-systems counted by weight are
A283877.
-
Table[Length[Select[Subsets[Subsets[Range[n],{2,n}]],Union@@#==Range[n]&&Min@@Length/@Split[Sort[Join@@#]]>1&]],{n,0,4}]
-
\\ here b(n) is A330056(n).
AS2(n, k) = {sum(i=0, min(n, k), (-1)^i * binomial(n, i) * stirling(n-i, k-i, 2) )}
b(n) = {sum(k=0, n, (-1)^k*binomial(n,k)*2^(2^(n-k)-(n-k)-1) * sum(j=0, k\2, sum(i=0, k-2*j, binomial(k,i) * AS2(k-i, j) * (2^(n-k)-1)^i * 2^(j*(n-k)) )))}
a(n) = {sum(k=0, n, (-1)^k*binomial(n,k)*b(n-k))} \\ Andrew Howroyd, Jan 16 2023
A369287
Triangle read by rows: T(n,k) is the number of non-isomorphic multiset partitions of weight n with k parts and no singletons or vertices that appear only once, 0 <= k <= floor(n/2).
Original entry on oeis.org
1, 0, 0, 1, 0, 1, 0, 2, 3, 0, 2, 4, 0, 4, 15, 8, 0, 4, 24, 19, 0, 7, 60, 79, 23, 0, 8, 101, 213, 84, 0, 12, 210, 615, 424, 66, 0, 14, 357, 1523, 1533, 363, 0, 21, 679, 3851, 5580, 2217, 212, 0, 24, 1142, 8963, 17836, 10379, 1575, 0, 34, 2049, 20840, 55730, 45866, 11616, 686
Offset: 0
Triangle begins:
1;
0;
0, 1;
0, 1;
0, 2, 3;
0, 2, 4;
0, 4, 15, 8;
0, 4, 24, 19;
0, 7, 60, 79, 23;
0, 8, 101, 213, 84;
0, 12, 210, 615, 424, 66;
0, 14, 357, 1523, 1533, 363;
0, 21, 679, 3851, 5580, 2217, 212;
0, 24, 1142, 8963, 17836, 10379, 1575;
...
The T(5,1) = 2 multiset partitions are:
{{1,1,1,1,1}},
{{1,1,1,2,2}}.
The corresponding T(5,1) = 2 matrices are:
[5] [3 2].
The T(5,2) = 4 matrices are:
[3] [3 0] [2 1] [2 1]
[2] [0 2] [1 1] [0 2],
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
K(q, t, k)={EulerT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k))}
H(q, t, k)={my(c=sum(j=1, #q, if(t%q[j]==0, q[j]))); (1 - x)*x*Ser(K(q,t,k)) - c*x}
G(n,y=1)={my(s=0); forpart(q=n, s+=permcount(q)*exp(sum(t=1, n, subst(H(q, t, n\t)*y^t/t, x, x^t) ))); s/n!}
T(n)={my(v=Vec(G(n,'y))); vector(#v, i, Vecrev(v[i], (i+1)\2))}
{ my(A=T(15)); for(i=1, #A, print(A[i])) }
A330124
Number of unlabeled set-systems with n vertices and no endpoints.
Original entry on oeis.org
1, 1, 2, 22, 1776
Offset: 0
Non-isomorphic representatives of the a(3) = 22 set-systems:
0
{1}{2}{12}
{12}{13}{23}
{1}{23}{123}
{12}{13}{123}
{1}{2}{13}{23}
{1}{2}{3}{123}
{1}{12}{13}{23}
{1}{2}{13}{123}
{1}{12}{13}{123}
{1}{12}{23}{123}
{12}{13}{23}{123}
{1}{2}{3}{12}{13}
{1}{2}{12}{13}{23}
{1}{2}{3}{12}{123}
{1}{2}{12}{13}{123}
{1}{2}{13}{23}{123}
{1}{12}{13}{23}{123}
{1}{2}{3}{12}{13}{23}
{1}{2}{3}{12}{13}{123}
{1}{2}{12}{13}{23}{123}
{1}{2}{3}{12}{13}{23}{123}
Partial sums of the covering case
A330196.
Unlabeled set-systems with no endpoints counted by weight are
A330054.
Unlabeled set-systems with no singletons are
A317794.
Unlabeled set-systems counted by vertices are
A000612.
Unlabeled set-systems counted by weight are
A283877.
The case with no singletons is
A320665.
A330196
Number of unlabeled set-systems covering n vertices with no endpoints.
Original entry on oeis.org
1, 0, 1, 20, 1754
Offset: 0
Non-isomorphic representatives of the a(3) = 20 set-systems:
{12}{13}{23}
{1}{23}{123}
{12}{13}{123}
{1}{2}{13}{23}
{1}{2}{3}{123}
{1}{12}{13}{23}
{1}{2}{13}{123}
{1}{12}{13}{123}
{1}{12}{23}{123}
{12}{13}{23}{123}
{1}{2}{3}{12}{13}
{1}{2}{12}{13}{23}
{1}{2}{3}{12}{123}
{1}{2}{12}{13}{123}
{1}{2}{13}{23}{123}
{1}{12}{13}{23}{123}
{1}{2}{3}{12}{13}{23}
{1}{2}{3}{12}{13}{123}
{1}{2}{12}{13}{23}{123}
{1}{2}{3}{12}{13}{23}{123}
First differences of the non-covering version
A330124.
Unlabeled set-systems with no endpoints counted by vertices are
A317794.
Unlabeled set-systems with no endpoints counted by weight are
A330054.
Unlabeled set-systems counted by vertices are
A000612.
Unlabeled set-systems counted by weight are
A283877.
Comments