cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A321015 Number of isohedral Voronoi parallelotopes in R^n.

Original entry on oeis.org

1, 2, 2, 4, 3, 6, 4, 7, 4, 6, 3, 10, 3, 7, 6, 9, 3, 10, 3, 10, 7, 6, 3, 15, 5, 6, 6, 11, 3, 14, 3, 11, 6, 6, 8, 16, 3, 6, 6, 15, 3, 15, 3, 10, 10, 6, 3, 19, 6, 10, 6, 10, 3, 14, 7, 16, 6, 6, 3, 22, 3, 6, 11, 13, 7, 14, 3, 10, 6, 15, 3, 23, 3, 6, 10, 10, 8, 14, 3, 19, 8, 6, 3, 23, 7
Offset: 1

Views

Author

N. J. A. Sloane, Nov 04 2018

Keywords

Examples

			Of the five different Voronoi cells of 3-dimensional lattices, only two are isohedral, so a(3) = 2: the cube and the rhombic dodecahedron, the Voronoi cells of the primitive cubic and the face-centered cubic lattices.
		

Crossrefs

Programs

  • Maple
    d2:=proc(n) local c; if n <= 3 then return(0); fi;
    c:=NumberTheory[tau](n)-1;
    if (n mod 2)=0 then c:=c-1; fi;
    if (n mod 3)=0 then c:=c-1; fi; c; end; # A321014
    d3:=proc(n) local c;  c:=0;
    if (n mod 6)=0 then c:=c+1; fi;
    if (n mod 7)=0 then c:=c+1; fi;
    if (n mod 8)=0 then c:=c+1; fi; c; end; # A321013
    [seq(NumberTheory[tau](n)+d2(n)+d3(n),n=1..120)];
  • PARI
    a(n) = 2*numdiv(n) + sum(k = 6, 8, !(n % k)) + n%2 + (n%3>0) - 3; \\ Amiram Eldar, Feb 02 2025

Formula

a(n) = d(n) + A321013(n) + A321014(n), where d(n) = A000005(n) is the number of divisors of n.
Sum_{k=1..n} a(k) ~ n * (2*log(n) + 4*gamma - 571/168), where gamma is Euler's constant (A001620). - Amiram Eldar, Feb 02 2025

A359955 a(n) is the smallest number with exactly n divisors that are greater than or equal to 4.

Original entry on oeis.org

4, 8, 12, 20, 24, 36, 48, 80, 60, 140, 192, 144, 120, 280, 180, 700, 240, 560, 1600, 5120, 360, 1120, 10000, 900, 960, 2240, 720, 2800, 840, 3080, 25600, 5184, 1260, 5600, 175175, 36864, 1680, 6160, 2880, 11200, 15360, 3600, 19600, 3705625, 2520, 12320, 6480, 70000
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 19 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = my(k=1); while (sumdiv(k, d, (d>=4)) != n, k++); k; \\ Michel Marcus, Jan 20 2023

A366972 a(n) = Sum_{k=4..n} floor(n/k).

Original entry on oeis.org

0, 0, 0, 1, 2, 3, 4, 6, 7, 9, 10, 13, 14, 16, 18, 21, 22, 25, 26, 30, 32, 34, 35, 40, 42, 44, 46, 50, 51, 56, 57, 61, 63, 65, 68, 74, 75, 77, 79, 85, 86, 91, 92, 96, 100, 102, 103, 110, 112, 116, 118, 122, 123, 128, 131, 137, 139, 141, 142, 151, 152, 154, 158, 163, 166
Offset: 1

Views

Author

Seiichi Manyama, Oct 30 2023

Keywords

Crossrefs

Column k=4 of A134867.
Partial sums of A321014.
Cf. A006218.

Programs

  • PARI
    a(n) = sum(k=4, n, n\k);
    
  • Python
    from math import isqrt
    def A366972(n): return -(s:=isqrt(n))**2+(sum(n//k for k in range(4,s+1))<<1)+n+(n>>1)+n//3 if n>8 else (0,0,0,0,1,2,3,4,6)[n] # Chai Wah Wu, Oct 30 2023

Formula

G.f.: 1/(1-x) * Sum_{k>=1} x^(4*k)/(1-x^k) = 1/(1-x) * Sum_{k>=4} x^k/(1-x^k).
a(n) = A006218(n)-n-floor(n/2)-floor(n/3). - Chai Wah Wu, Oct 30 2023
Previous Showing 11-13 of 13 results.