cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A349075 a(n) = U(n, 2*n), where U(n, x) is the Chebyshev polynomial of the second kind.

Original entry on oeis.org

1, 4, 63, 1704, 64769, 3168060, 189447551, 13389885712, 1092011153409, 100934312212404, 10426892198423999, 1190514147664125240, 148874434455514989313, 20235554722675691942764, 2970511463324707397138175, 468359315014627272862943520, 78938449723310515780367269889
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 07 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[ChebyshevU[n, 2*n], {n, 0, 20}]
  • PARI
    a(n) = polchebyshev(n, 2, 2*n); \\ Michel Marcus, Nov 07 2021

Formula

a(n) = ((2*n + sqrt(4*n^2-1))^(n+1) - (2*n - sqrt(4*n^2-1))^(n+1)) / (2*sqrt(4*n^2-1)).
a(n) ~ 4^n * n^n.

A318192 a(n) = U_{n}(n)/(n+1) where U_{n}(x) is a Chebyshev polynomial of the second kind.

Original entry on oeis.org

1, 1, 5, 51, 781, 16005, 411881, 12776743, 464278585, 19350109449, 910126036909, 47694593157211, 2755988277318277, 174100457124362509, 11937317942278298961, 882942450221936166735, 70077737629245663437041, 5940877531422707027770385
Offset: 0

Views

Author

Seiichi Manyama, Jan 07 2019

Keywords

Crossrefs

Cf. A323118.

Programs

  • PARI
    {a(n) = polchebyshev(n, 2, n)/(n+1)}
    
  • PARI
    {a(n) = sum(k=0, n\2, binomial(n, 2*k)*(n^2-1)^k*n^(n-2*k)/(2*k+1))}

Formula

a(n) = A323118(n)/(n+1).
a(n) = Sum_{k=0..floor(n/2)} (1/(2*k+1)) * binomial(n,2*k)*(n^2-1)^k*n^(n-2*k).

A342207 a(n) = U(n,n+1) where U(n,x) is a Chebyshev polynomial of the second kind.

Original entry on oeis.org

1, 4, 35, 496, 9701, 241956, 7338631, 262184896, 10783446409, 501827040100, 26069206375211, 1495427735314800, 93885489910449901, 6403169506981578436, 471427031236487965199, 37265225545829174607616, 3147895910861898495432209
Offset: 0

Views

Author

Seiichi Manyama, Mar 05 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[ChebyshevU[n, n + 1], {n, 0, 16}] (* Amiram Eldar, Mar 05 2021 *)
  • PARI
    a(n) = polchebyshev(n, 2, n+1);
    
  • PARI
    a(n) = sum(k=0, n, (2*n)^(n-k)*binomial(2*n+1-k, k));
    
  • PARI
    a(n) = sum(k=0, n, (2*n)^k*binomial(n+1+k, 2*k+1));

Formula

a(n) = Sum_{k=0..n} (2*n)^(n-k) * binomial(2*n+1-k,k) = Sum_{k=0..n} (2*n)^k * binomial(n+1+k,2*k+1).
a(n) ~ exp(1) * 2^n * n^n. - Vaclav Kotesovec, Mar 05 2021
Previous Showing 11-13 of 13 results.