cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A329371 Dirichlet convolution of the identity function with A246277.

Original entry on oeis.org

0, 1, 1, 4, 1, 8, 1, 12, 5, 12, 1, 28, 1, 16, 11, 32, 1, 37, 1, 44, 15, 24, 1, 80, 7, 28, 19, 60, 1, 82, 1, 80, 21, 36, 15, 128, 1, 40, 27, 128, 1, 114, 1, 92, 49, 48, 1, 208, 9, 89, 33, 108, 1, 146, 21, 176, 39, 60, 1, 284, 1, 64, 69, 192, 25, 174, 1, 140, 45, 170, 1, 364, 1, 76, 70, 156, 21, 210, 1, 336, 65, 84, 1, 396, 33, 88, 55, 272, 1, 368, 25, 188, 63
Offset: 1

Views

Author

Antti Karttunen, Nov 12 2019

Keywords

Crossrefs

Programs

  • PARI
    A246277(n) = if(1==n, 0, my(f = factor(n), k = primepi(f[1,1])-1); for (i=1, #f~, f[i,1] = prime(primepi(f[i,1])-k)); factorback(f)/2);
    A329371(n) = sumdiv(n,d,(n/d)*A246277(d));

Formula

a(n) = Sum_{d|n} d * A246277(n/d).

A369740 a(n) = Sum_{p|n, p prime} p^sigma(n/p).

Original entry on oeis.org

0, 2, 3, 8, 5, 43, 7, 128, 81, 189, 11, 6283, 13, 599, 1354, 32768, 17, 539633, 19, 340269, 8962, 5427, 23, 282784363, 15625, 18581, 1594323, 17600759, 29, 648338330, 31, 2147483648, 546082, 267057, 508274, 23426548268849, 37, 1055435, 4811530, 4428564089229, 41, 300565790978
Offset: 1

Views

Author

Wesley Ivan Hurt, Jan 30 2024

Keywords

Crossrefs

Cf. A000203 (sigma), A323599, A369903, A369904.

Programs

  • Mathematica
    Table[DivisorSum[n, #^DivisorSigma[1, n/#] &, PrimeQ[#] &], {n, 50}]

Formula

a(p^k) = p^((1-p^k)/(1-p)) for p prime and k>=1. - Wesley Ivan Hurt, Jul 16 2025

A369903 a(n) = Sum_{p|n, p prime} n^sigma(n/p).

Original entry on oeis.org

0, 2, 3, 64, 5, 1512, 7, 2097152, 6561, 1001000, 11, 8916136280064, 13, 1475791800, 11441250, 1152921504606846976, 17, 21979796247097344, 19, 262144000000001280000000, 37823053842, 12855002631059864, 23, 442501521100279866178075737690262732800, 244140625
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 05 2024

Keywords

Crossrefs

Cf. A000203 (sigma), A323599, A329354, A369740.

Programs

  • Mathematica
    Table[DivisorSum[n, n^DivisorSigma[1, n/#] &, PrimeQ[#] &], {n, 30}]

Formula

a(p^k) = p^(k*(1-p^k)/(1-p)), for prime p and k >= 1. - Wesley Ivan Hurt, Jun 26 2024

A369904 a(n) = n * Sum_{p|n, p prime} sigma(n/p) / p.

Original entry on oeis.org

0, 1, 1, 6, 1, 18, 1, 28, 12, 36, 1, 100, 1, 62, 42, 120, 1, 189, 1, 208, 68, 138, 1, 456, 30, 188, 117, 364, 1, 612, 1, 496, 144, 312, 86, 1038, 1, 386, 194, 960, 1, 1080, 1, 820, 477, 558, 1, 1936, 56, 955, 318, 1120, 1, 1782, 162, 1688, 392, 876, 1, 3336, 1, 998, 789
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 05 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n*DivisorSum[n, DivisorSigma[1, n/#]/# &, PrimeQ[#] &], {n, 100}]

Formula

a(p^k) = p^(k-1)*(p^k-1)/(p-1), for prime p and k >= 1. - Wesley Ivan Hurt, Jun 26 2024
Previous Showing 11-14 of 14 results.