cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A346526 Positive integers k that are the product of two integers greater than 1 and ending with the same digit as k.

Original entry on oeis.org

25, 36, 75, 96, 100, 121, 125, 156, 175, 200, 216, 225, 231, 256, 275, 276, 300, 325, 336, 341, 375, 396, 400, 416, 425, 441, 451, 456, 475, 500, 516, 525, 561, 575, 576, 600, 625, 636, 651, 671, 675, 676, 696, 700, 725, 736, 756, 775, 781, 800, 816, 825, 861, 875
Offset: 1

Views

Author

Stefano Spezia, Jul 22 2021

Keywords

Comments

Union of 100*A000027, A053742, A324297 and A346507.

Examples

			25 = 5*5, 36 = 6*6, 75 = 5*15, 96 = 6*16, 100 = 10*10, 121 = 11*11, 125 = 5*25, 156 = 6*26, 175 = 5*35, 200 = 10*20, 216 = 6*36, 225 = 15*15, 231 = 11*21, ...
		

Crossrefs

Programs

  • Lisp
    (setf candidates (list 25)) (setf result nil)
    (defun factor (num small-num) (equalp 0 (mod num small-num)))
    (defun same-end-digit (num1 num2 num3) (and (equalp (mod num1 10) (mod num2 10)) (equalp (mod num2 10) (mod num3 10))))
    (defun good-factor-p (num) (loop for i from 5 to (sqrt num) do ( if (factor num i) ( if (same-end-digit num i (/ num i) ) (return T) ))))
    (loop for i from 26 to 9000 do ( if (or (equalp 0 (mod i 10)) (equalp 1 (mod i 10)) (equalp 5 (mod i 10)) (equalp 6 (mod i 10))) (push i candidates)))
    (dolist (element candidates) (if (good-factor-p element) (push element result)))
    (format t (write-to-string result)) \\ FUNG Cheok Yin, Aug 12 2021
  • PARI
    isok(k) = my(u=k%10); sumdiv(k, d, (d>1) && (d 0; \\ Michel Marcus, Jul 23 2021
    

Formula

Lim_{n->infinity} a(n)/a(n-1) = 1.

A347746 Positive integers that are equal both to the product of two integers ending with 4 and to that of two integers ending with 6.

Original entry on oeis.org

96, 216, 256, 336, 416, 456, 576, 696, 736, 756, 816, 896, 936, 1056, 1176, 1216, 1296, 1376, 1416, 1456, 1536, 1596, 1656, 1696, 1776, 1836, 1856, 1896, 1976, 2016, 2136, 2176, 2256, 2336, 2376, 2436, 2496, 2576, 2616, 2656, 2736, 2816, 2856, 2916, 2976, 3016
Offset: 1

Views

Author

Stefano Spezia, Sep 12 2021

Keywords

Comments

Intersection of A324297 and A347253.

Examples

			96 = 4*24 = 6*16, 216 = 4*54 = 6*36, 256 = 4*64 = 16*16, 336 = 4*84 = 6*56, ...
		

Crossrefs

Cf. A017341 (supersequence), A324297, A347253, A347748.

Programs

  • Mathematica
    max=3050;Select[Intersection[Union@Flatten@Table[a*b, {a, 4, Floor[max/4], 10}, {b, a, Floor[max/a], 10}],Union@Flatten@Table[a*b, {a, 6, Floor[max/6], 10}, {b, a, Floor[max/a], 10}]], 0<#
    				
  • Python
    def aupto(lim): return sorted(set(a*b for a in range(4, lim//4+1, 10) for b in range(a, lim//a+1, 10)) & set(a*b for a in range(6, lim//6+1, 10) for b in range(a, lim//a+1, 10)))
    print(aupto(3017)) # Michael S. Branicky, Sep 12 2021

Formula

Lim_{n->infinity} a(n)/a(n-1) = 1.

A348548 Positive integers that are the product of two integers ending with 8.

Original entry on oeis.org

64, 144, 224, 304, 324, 384, 464, 504, 544, 624, 684, 704, 784, 864, 944, 1024, 1044, 1064, 1104, 1184, 1224, 1264, 1344, 1404, 1424, 1444, 1504, 1584, 1624, 1664, 1744, 1764, 1824, 1904, 1944, 1984, 2064, 2124, 2144, 2184, 2204, 2224, 2304, 2384, 2464, 2484, 2544
Offset: 1

Views

Author

Stefano Spezia, Oct 22 2021

Keywords

Examples

			64 = 8*8, 144 = 8*18, 224 = 8*28, 304 = 8*38, 324 = 18*18, 384 = 8*48, ...
		

Crossrefs

Cf. A017317 (supersequence), A053742 (ending with 5), A139245 (ending with 2), A324297 (ending with 6), A346950 (ending with 3), A347253 (ending with 4), A348054 (ending with 7), A348549.

Programs

  • Mathematica
    a={}; For[n=0, n<=260, n++, For[k=0, k<=n, k++, If[Mod[10*n+4, 10*k+8]==0 && Mod[(10*n+4)/(10*k+8), 10]==8 && 10*n+4>Max[a], AppendTo[a, 10*n+4]]]]; a
  • Python
    def aupto(lim): return sorted(set(a*b for a in range(8, lim//8+1, 10) for b in range(a, lim//a+1, 10)))
    print(aupto(2550)) # Michael S. Branicky, Oct 22 2021

Formula

Lim_{n->infinity} a(n)/a(n-1) = 1.
Previous Showing 11-13 of 13 results.