cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A324358 Total number of occurrences of 8 in the (signed) displacement sets of all permutations of [n+8] divided by 8!.

Original entry on oeis.org

0, 1, 17, 244, 3455, 50356, 766943, 12274858, 206788751, 3666278080, 68339173319, 1337340802942, 27431518405607, 588814390368244, 13204430589422015, 308877966133175746, 7525275697320564383, 190678032594396773128, 5017985343328106906711, 136977444553573371090790
Offset: 0

Views

Author

Alois P. Heinz, Feb 23 2019

Keywords

Crossrefs

Column k=8 of A324362.
Cf. A306234.

Programs

  • Maple
    a:= n-> (k-> -add((-1)^j*binomial(n, j)*(n+k-j)!, j=1..n)/k!)(8):
    seq(a(n), n=0..23);

Formula

E.g.f.: (1-exp(-x))/(1-x)^9.
a(n) = -1/8! * Sum_{j=1..n} (-1)^j * binomial(n,j) * (n+8-j)!.
a(n) = A306234(n+8,8).

A324359 Total number of occurrences of 9 in the (signed) displacement sets of all permutations of [n+9] divided by 9!.

Original entry on oeis.org

0, 1, 19, 301, 4659, 73651, 1208849, 20736801, 372683159, 7020426511, 138543438429, 2861318625661, 61767341913539, 1391789835244251, 32689488282841529, 799220290375798681, 20312800343333343279, 535995638431063608871, 14665906835087251866389
Offset: 0

Views

Author

Alois P. Heinz, Feb 23 2019

Keywords

Crossrefs

Column k=9 of A324362.
Cf. A306234.

Programs

  • Magma
    [0] cat [(-1/Factorial(9)) * &+[(-1)^j * Binomial(n,j) * Factorial(n+9-j) : j in [1..n]]: n in [1..20]]; // Vincenzo Librandi, Jun 06 2019
  • Maple
    a:= n-> (k-> -add((-1)^j*binomial(n, j)*(n+k-j)!, j=1..n)/k!)(9):
    seq(a(n), n=0..23);
  • Mathematica
    Range[0, 20]! CoefficientList[Series[(1 - Exp[-x])/(1 - x)^10, {x, 0, 20}], x] (* Vincenzo Librandi, Jun 06 2019 *)

Formula

E.g.f.: (1-exp(-x))/(1-x)^10.
a(n) = -1/9! * Sum_{j=1..n} (-1)^j * binomial(n,j) * (n+9-j)!.
a(n) = A306234(n+9,9).

A324360 Total number of occurrences of 10 in the (signed) displacement sets of all permutations of [n+10] divided by 10!.

Original entry on oeis.org

0, 1, 21, 364, 6115, 104226, 1834205, 33576236, 641293047, 12792063934, 266464077769, 5792423481120, 131276423686979, 3098383343174978, 76066855087291221, 1940223116685166996, 51356370210296015215, 1409053932006095867526, 40028877611196977481857
Offset: 0

Views

Author

Alois P. Heinz, Feb 23 2019

Keywords

Crossrefs

Column k=10 of A324362.
Cf. A306234.

Programs

  • Maple
    a:= n-> (k-> -add((-1)^j*binomial(n, j)*(n+k-j)!, j=1..n)/k!)(10):
    seq(a(n), n=0..23);
  • Mathematica
    With[{nn=20},CoefficientList[Series[(1-Exp[-x])/(1-x)^11,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Sep 04 2023 *)

Formula

E.g.f.: (1-exp(-x))/(1-x)^11.
a(n) = -1/10! * Sum_{j=1..n} (-1)^j * binomial(n,j) * (n+10-j)!.
a(n) = A306234(n+10,10).
Previous Showing 11-13 of 13 results.