cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A324405 Squarefree integers m > 1 such that if prime p divides m, then s_p(m) >= p and s_p(m) == 3 (mod p-1), where s_p(m) is the sum of the base p digits of m.

Original entry on oeis.org

3003, 3315, 5187, 7395, 8463, 14763, 19803, 26733, 31755, 47523, 50963, 58035, 62403, 88023, 105339, 106113, 123123, 139971, 152643, 157899, 166611, 178923, 183183, 191919
Offset: 1

Views

Author

Keywords

Comments

For d >= 1 define S_d = (terms m in A324315 such that s_p(m) == d (mod p-1) if prime p divides m). Then S_1 is precisely the Carmichael numbers (A002997), S_2 is A324404, S_3 is A324405, and the union of all S_d for d >= 1 is A324315.
Subsequence of the 3-Knödel numbers (A033553). Generally, for d > 1 the terms of S_d that are greater than d form a subsequence of the d-Knödel numbers.
See Kellner and Sondow 2019.

Examples

			3003 = 3*7*11*13 is squarefree and equals 11010020_3, 11520_7, 2290_11, and 14a0_13 in base p = 3, 7, 11, and 13. Then s_3(3003) = 1+1+1+2 = 5 >= 3, s_7(3003) = 1+1+5+2 = 9 >= 7, s_11(3003) = 2+2+9 = 13 >= 11, and s_13(3003) = 1+4+a = 1+4+10 = 15 >= 13. Also, s_3(3003) = 5 == 3 (mod 2), s_7(3003) = 9 == 3 (mod 6), s_11(3003) = 13 == 3 (mod 10), and s_13(3003) = 15 == 3 (mod 12), so 3003 is a member.
		

Crossrefs

Programs

  • Mathematica
    SD[n_, p_] := If[n < 1 || p < 2, 0, Plus @@ IntegerDigits[n, p]];
    LP[n_] := Transpose[FactorInteger[n]][[1]];
    TestSd[n_, d_] := (n > 1) && (d > 0) && SquareFreeQ[n] && VectorQ[LP[n], SD[n, #] >= # && Mod[SD[n, #] - d, # - 1] == 0 &];
    Select[Range[200000], TestSd[#, 3] &]

A324317 Number of primary Carmichael numbers (A324316) less than 10^n.

Original entry on oeis.org

0, 0, 0, 2, 4, 9, 19, 51, 107, 219, 417, 757, 1470, 2666, 5040, 9280, 17210, 32039, 59762, 111811, 210627, 397968
Offset: 1

Views

Author

Keywords

Comments

The number of Carmichael numbers (A002997) less than 10^n is 0, 0, 1, 7, 16, 43, 105, 255, 646, 1547, 3605, 8241, 19279, 44706, 105212, 246683, 585355, 1401644, ... (see A055553).
The terms up to a(10) are given in Table 1 of Kellner and Sondow 2019. The terms up to a(18) and related results are given in Table 1.5 of Kellner 2019.
All computations depend on Pinch's database.

Examples

			There are two primary Carmichael numbers less than 10^4, namely, 1729 and 2821, so a(4) = 2.
		

Crossrefs

Extensions

a(11)-a(18) from Amiram Eldar, Mar 01 2019
a(19) from Amiram Eldar, Dec 05 2020
a(20)-a(22) calculated using data from Claude Goutier and added by Amiram Eldar, Apr 22 2024

A324318 Number of terms in A324315 (squarefree integers m > 1 such that if prime p divides m, then the sum of the base p digits of m is at least p) less than 10^n.

Original entry on oeis.org

0, 0, 2, 57, 636, 7048, 75150, 801931, 8350039, 86361487
Offset: 1

Views

Author

Keywords

Comments

The number of squarefree integers less than 10^n is 0, 6, 61, 608, 6083, 60794, 607926, 6079291, 60792694, 607927124, ... (see A053462).

Examples

			There are two terms of A324315 less than 10^3, namely, 231 and 561, so a(3) = 2.
		

Crossrefs

A341109 a(n) = denominator(p(n, x)) / (n!*denominator(bernoulli(n, x))), where p(n, x) = Sum_{k=0..n} E2(n, k)*binomial(x + k, 2*n) / Product_{j=1..n} (j - x) and E2(n, k) are the second-order Eulerian numbers A201637.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 96, 192, 1152, 768, 1536, 3072, 18432, 36864, 221184, 147456, 884736, 1769472, 10616832, 21233664, 637009920, 424673280, 2548039680, 5096079360, 152882380800, 61152952320, 366917713920, 81537269760, 163074539520, 326149079040, 1956894474240
Offset: 0

Views

Author

Peter Luschny, Feb 06 2021

Keywords

Comments

The challenge is to characterize the sequence purely arithmetically, i.e., without reference to the Eulerian numbers or the Bernoulli polynomials.

Crossrefs

Programs

  • Maple
    Epoly := proc(n, x) add(combinat:-eulerian2(n, k)*binomial(x+k, 2*n), k = 0..n) / mul(j-x, j = 1..n): simplify(expand(%)) end:
    seq(denom(Epoly(n, x)) / (n!*denom(bernoulli(n, x))), n = 0..30);
  • Mathematica
    A053657[n_] := Product[p^Sum[Floor[(n-1)/((p-1) p^k)], {k,0,n}],{p, Prime[Range[n]]}];
    A144845[n_] := Denominator[Together[BernoulliB[n, x]]];
    A163176[n_] := A053657[n] / n!;
    Table[(n + 1) A163176[n + 1] / A144845[n], {n, 0, 30}]
  • Sage
    def A341109(n): # uses[A341108, A318256]
        return A341108(n)//A318256(n)
    print([A341109(n) for n in (0..30)])

Formula

a(n) = A053657(n+1)/(n!*A144845(n)).
a(n) = (n+1)*A163176(n+1)/A144845(n).
a(n) = A341108(n)/A318256(n).
a(n) = A341107(n)*A324369(n+1).
a(n) = A341108(n)/A324370(n+1).
a(n) = A341108(n)*A007947(n+1)/A144845(n).
a(n) = A341108(n)*A324369(n+1)/A195441(n).
prime(n) divides a(k) for k >= A036689(n).
2^(n-1) divides exactly a(n) for n >= 2.
Previous Showing 11-14 of 14 results.