A324702
Lexicographically earliest sequence containing 2 and all positive integers > 1 whose prime indices minus 1 already belong to the sequence.
Original entry on oeis.org
2, 5, 13, 25, 43, 65, 101, 125, 169, 193, 215, 317, 325, 505, 557, 559, 625, 701, 845, 965, 1013, 1075, 1181, 1313, 1321, 1585, 1625, 1849, 2111, 2161, 2197, 2509, 2525, 2785, 2795, 3125, 3505, 3617, 4049, 4057, 4121, 4225, 4343, 4639, 4825, 5065, 5297, 5375
Offset: 1
The sequence of terms together with their prime indices begins:
2: {1}
5: {3}
13: {6}
25: {3,3}
43: {14}
65: {3,6}
101: {26}
125: {3,3,3}
169: {6,6}
193: {44}
215: {3,14}
317: {66}
325: {3,3,6}
505: {3,26}
557: {102}
559: {6,14}
625: {3,3,3,3}
701: {126}
845: {3,6,6}
965: {3,44}
Cf.
A000002,
A000720,
A001222,
A001462,
A007097,
A045965,
A055396,
A061395,
A064989,
A079000,
A079254,
A109298,
A112798,
A276625,
A277098,
A304360.
-
aQ[n_]:=Switch[n,0,False,1,False,2,True,,And@@Cases[FactorInteger[n],{p,k_}:>aQ[PrimePi[p]-1]]];
Select[Range[100],aQ]
A324703
Lexicographically earliest sequence containing 3 and all positive integers n such that the prime indices of n - 1 already belong to the sequence.
Original entry on oeis.org
3, 6, 14, 26, 44, 66, 102, 126, 170, 194, 216, 318, 326, 506, 558, 560, 626, 702, 846, 966, 1014, 1076, 1182, 1314, 1322, 1586, 1626, 1850, 2112, 2162, 2198, 2510, 2526, 2786, 2796, 3126, 3506, 3618, 4050, 4058, 4122, 4226, 4344, 4640, 4826, 5066, 5298, 5376
Offset: 1
Cf.
A000002,
A000720,
A001222,
A001462,
A007097,
A045965,
A055396,
A061395,
A064989,
A079000,
A079254,
A109298,
A112798,
A276625,
A277098,
A304360.
-
aQ[n_]:=Switch[n,0,False,3,True,,And@@Cases[FactorInteger[n-1],{p,k_}:>aQ[PrimePi[p]]]];
Select[Range[0,1000],aQ]
A324705
Lexicographically earliest sequence containing 1 and all composite numbers divisible by prime(m) for some m already in the sequence.
Original entry on oeis.org
1, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 22, 24, 26, 28, 30, 32, 34, 35, 36, 38, 39, 40, 42, 44, 46, 48, 49, 50, 52, 54, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 70, 72, 74, 76, 77, 78, 80, 82, 84, 86, 87, 88, 90, 91, 92, 94, 95, 96, 98, 100, 102, 104, 105, 106
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
4: {1,1}
6: {1,2}
8: {1,1,1}
10: {1,3}
12: {1,1,2}
14: {1,4}
16: {1,1,1,1}
18: {1,2,2}
20: {1,1,3}
21: {2,4}
22: {1,5}
24: {1,1,1,2}
26: {1,6}
28: {1,1,4}
30: {1,2,3}
32: {1,1,1,1,1}
34: {1,7}
35: {3,4}
36: {1,1,2,2}
Cf.
A000002,
A000720,
A001222,
A001462,
A007097,
A055396,
A061395,
A079000,
A079254,
A109298,
A112798,
A276625,
A277098,
A304360.
-
aQ[n_]:=Switch[n,1,True,?PrimeQ,False,,!And@@Cases[FactorInteger[n],{p_,k_}:>!aQ[PrimePi[p]]]];
Select[Range[200],aQ]
A324748
Number of strict integer partitions of n containing all prime indices of the parts.
Original entry on oeis.org
1, 1, 0, 1, 0, 1, 1, 1, 0, 2, 1, 2, 3, 2, 2, 4, 3, 4, 3, 5, 6, 9, 8, 7, 8, 11, 12, 13, 15, 17, 22, 22, 20, 28, 31, 32, 36, 41, 43, 53, 53, 59, 70, 76, 77, 89, 99, 108, 124, 135, 139, 160, 172, 188, 209, 229, 243, 274, 298, 315, 353, 391, 417, 457, 496, 538, 588
Offset: 0
The first 15 terms count the following integer partitions.
1: (1)
3: (2,1)
5: (4,1)
6: (3,2,1)
7: (4,2,1)
9: (8,1)
9: (6,2,1)
10: (4,3,2,1)
11: (8,2,1)
11: (5,3,2,1)
12: (9,2,1)
12: (7,4,1)
12: (6,3,2,1)
13: (8,4,1)
13: (6,4,2,1)
14: (8,3,2,1)
14: (7,4,2,1)
15: (12,2,1)
15: (9,3,2,1)
15: (8,4,2,1)
15: (5,4,3,2,1)
An example for n = 6 is (20,18,11,5,3,2,1), with prime indices:
20: {1,1,3}
18: {1,2,2}
11: {5}
5: {3}
3: {2}
2: {1}
1: {}
All of these prime indices {1,2,3,5} belong to the partition, as required.
Cf.
A000720,
A001462,
A007097,
A074971,
A078374,
A112798,
A276625,
A279861,
A290689,
A290760,
A305713.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&SubsetQ[#,PrimePi/@First/@Join@@FactorInteger/@DeleteCases[#,1]]&]],{n,0,30}]
A324737
Number of subsets of {2...n} containing every element of {2...n} whose prime indices all belong to the subset.
Original entry on oeis.org
1, 2, 3, 6, 8, 16, 24, 48, 84, 168, 216, 432, 648, 1296, 2448, 4896, 6528, 13056, 19584, 39168, 77760, 155520, 229248, 458496, 790272, 1580544, 3128832, 6257664, 9386496, 18772992, 24081408, 48162816, 95938560, 191877120, 378335232, 756670464, 1135005696, 2270011392
Offset: 1
The a(1) = 1 through a(6) = 16 subsets:
{} {} {} {} {} {}
{2} {3} {3} {4} {4}
{2,3} {4} {5} {5}
{2,3} {3,5} {6}
{3,4} {4,5} {3,5}
{2,3,4} {2,3,5} {4,5}
{3,4,5} {4,6}
{2,3,4,5} {5,6}
{2,3,5}
{3,4,5}
{3,5,6}
{4,5,6}
{2,3,4,5}
{2,3,5,6}
{3,4,5,6}
{2,3,4,5,6}
An example for n = 15 is {2, 3, 5, 8, 9, 10, 11, 15}. The numbers from 2 to 15 with all prime indices in the subset are {3, 5, 9, 11, 15}, which all belong to the subset, as required.
Cf.
A000720,
A001221,
A001462,
A007097,
A084422,
A085945,
A112798,
A276625,
A290689,
A290822,
A304360,
A306844.
-
Table[Length[Select[Subsets[Range[2,n]],Function[set,SubsetQ[set,Select[Range[2,n],SubsetQ[set,PrimePi/@First/@FactorInteger[#]]&]]]]],{n,10}]
-
pset(n)={my(b=0, f=factor(n)[, 1]); sum(i=1, #f, 1<<(primepi(f[i])))}
a(n)={my(p=vector(n-1, k, pset(k+1)>>1), d=0); for(i=1, #p, d=bitor(d, p[i]));
((k, b)->if(k>#p, 1, my(t=self()(k+1, b+(1<Andrew Howroyd, Aug 24 2019
A324854
Lexicographically earliest sequence containing 1 and all positive integers > 2 whose prime indices already belong to the sequence.
Original entry on oeis.org
1, 4, 7, 8, 14, 16, 17, 19, 28, 32, 34, 38, 43, 49, 53, 56, 59, 64, 67, 68, 76, 86, 98, 106, 107, 112, 118, 119, 128, 131, 133, 134, 136, 139, 152, 163, 172, 191, 196, 212, 214, 224, 227, 236, 238, 241, 256, 262, 263, 266, 268, 272, 277, 278, 289, 301, 304
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
4: {1,1}
7: {4}
8: {1,1,1}
14: {1,4}
16: {1,1,1,1}
17: {7}
19: {8}
28: {1,1,4}
32: {1,1,1,1,1}
34: {1,7}
38: {1,8}
43: {14}
49: {4,4}
53: {16}
56: {1,1,1,4}
59: {17}
64: {1,1,1,1,1,1}
67: {19}
68: {1,1,7}
-
S:= {1}:
for n from 3 to 400 do
if map(numtheory:-pi, numtheory:-factorset(n)) subset S then
S:= S union {n}
fi
od:
sort(convert(S,list)); # Robert Israel, Mar 19 2019
-
aQ[n_]:=Switch[n,1,True,2,False,,And@@Cases[FactorInteger[n],{p,k_}:>aQ[PrimePi[p]]]];
Select[Range[100],aQ]
A324855
Lexicographically earliest sequence containing 2 and all squarefree numbers > 2 whose prime indices already belong to the sequence.
Original entry on oeis.org
2, 3, 5, 11, 15, 31, 33, 47, 55, 93, 127, 137, 141, 155, 165, 211, 235, 257, 341, 381, 411, 465, 487, 517, 633, 635, 685, 705, 709, 771, 773, 811, 907, 977, 1023, 1055, 1285, 1297, 1397, 1457, 1461, 1483, 1507, 1551, 1621, 1705, 1905, 2055, 2127, 2293, 2319
Offset: 1
The sequence of terms together with their prime indices begins:
2: {1}
3: {2}
5: {3}
11: {5}
15: {2,3}
31: {11}
33: {2,5}
47: {15}
55: {3,5}
93: {2,11}
127: {31}
137: {33}
141: {2,15}
155: {3,11}
165: {2,3,5}
211: {47}
235: {3,15}
257: {55}
341: {5,11}
381: {2,31}
-
S:= {2}: count:= 1:
for n from 3 by 2 while count < 100 do
F:= ifactors(n)[2];
if max(map(t -> t[2],F))=1 and {seq(numtheory:-pi(t[1]),t=F)} subset S then
S:= S union {n}; count:= count+1;
fi
od:
sort(convert(S,list)); # Robert Israel, Mar 22 2019
-
aQ[n_]:=Switch[n,1,False,2,True,?(!SquareFreeQ[#]&),False,,And@@Cases[FactorInteger[n],{p_,k_}:>aQ[PrimePi[p]]]];
Select[Range[1000],aQ]
A306719
Lexicographically earliest sequence containing 2 and all positive integers n such that the prime indices of n - 1 already belong to the sequence.
Original entry on oeis.org
2, 4, 8, 10, 20, 22, 28, 30, 50, 58, 64, 72, 80, 82, 88, 108, 114, 134, 148, 172, 190, 204, 214, 230, 238, 244, 262, 272, 312, 322, 340, 344, 360, 362, 400, 410, 422, 442, 458, 498, 514, 552, 554, 568, 594, 610, 620, 640, 688, 712, 730, 750, 758, 784, 792, 814
Offset: 1
Cf.
A000002,
A000720,
A001222,
A001462,
A007097,
A055396,
A061395,
A079000,
A079254,
A109298,
A112798,
A276625,
A277098,
A304360.
Cf.
A324694,
A324695,
A324696,
A324697,
A324698,
A324700,
A324701,
A324702,
A324703,
A324704,
A324705.
-
aQ[n_]:=Switch[n,0,False,2,True,,And@@Cases[FactorInteger[n-1],{p,k_}:>aQ[PrimePi[p]]]];
Select[Range[0,100],aQ]
Comments