A325702 Number of integer partitions of n containing their multiset of multiplicities (as a submultiset).
1, 1, 0, 0, 2, 1, 2, 1, 3, 3, 8, 7, 10, 13, 17, 19, 28, 35, 38, 51, 67, 81, 100, 128, 157, 195, 233, 285, 348, 427, 506, 613, 733, 873, 1063, 1263, 1503, 1802, 2131, 2537, 3005, 3565, 4171, 4922, 5820, 6775, 8001, 9333, 10860, 12739, 14840, 17206, 20029, 23248
Offset: 0
Keywords
Examples
The partition x = (4,3,1,1,1) has multiplicities (3,1,1), which are a submultiset of x, so x is counted under a(10). The a(1) = 1 through a(11) = 7 partitions: (1) (22) (221) (2211) (3211) (4211) (333) (3322) (7211) (211) (3111) (32111) (5211) (3331) (33221) (41111) (32211) (6211) (52211) (42211) (53111) (43111) (322211) (322111) (332111) (421111) (431111) (511111)
Crossrefs
Programs
-
Mathematica
submultQ[cap_,fat_]:=And@@Function[i,Count[fat,i]>=Count[cap,i]]/@Union[List@@cap] Table[Length[Select[IntegerPartitions[n],submultQ[Sort[Length/@Split[#]],#]&]],{n,0,30}]
Comments