A306844
Number of anti-transitive rooted trees with n nodes.
Original entry on oeis.org
1, 1, 2, 3, 7, 14, 36, 83, 212, 532, 1379, 3577, 9444, 25019, 66943, 179994, 487031, 1323706, 3614622, 9907911
Offset: 1
The a(1) = 1 through a(6) = 14 anti-transitive rooted trees:
o (o) (oo) (ooo) (oooo) (ooooo)
((o)) ((oo)) ((ooo)) ((oooo))
(((o))) (((oo))) (((ooo)))
((o)(o)) ((o)(oo))
((o(o))) ((o(oo)))
(o((o))) ((oo(o)))
((((o)))) (o((oo)))
(oo((o)))
((((oo))))
(((o)(o)))
(((o(o))))
((o((o))))
(o(((o))))
(((((o)))))
Cf.
A324694,
A324695,
A324738,
A324741,
A324743,
A324751,
A324754,
A324756,
A324758,
A324759,
A324764.
-
rtall[n_]:=Union[Sort/@Join@@(Tuples[rtall/@#]&/@IntegerPartitions[n-1])];
Table[Length[Select[rtall[n],Intersection[Union@@#,#]=={}&]],{n,10}]
A324758
Heinz numbers of integer partitions containing no prime indices of the parts.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 16, 17, 19, 20, 21, 22, 23, 25, 27, 29, 31, 32, 33, 34, 35, 37, 40, 41, 43, 44, 46, 47, 49, 50, 51, 53, 57, 59, 61, 62, 63, 64, 65, 67, 68, 71, 73, 77, 79, 80, 81, 82, 83, 85, 87, 88, 89, 91, 92, 93, 94, 95, 97, 99, 100, 101
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
3: {2}
4: {1,1}
5: {3}
7: {4}
8: {1,1,1}
9: {2,2}
10: {1,3}
11: {5}
13: {6}
16: {1,1,1,1}
17: {7}
19: {8}
20: {1,1,3}
21: {2,4}
22: {1,5}
23: {9}
25: {3,3}
27: {2,2,2}
The subset version is
A324741, with maximal case
A324743. The strict integer partition version is
A324751. The integer partition version is
A324756. An infinite version is
A324695.
Cf.
A000720,
A001221,
A001462,
A007097,
A056239,
A112798,
A276625,
A289509,
A290822,
A304360,
A306844,
A324742,
A324753,
A324764.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Intersection[primeMS[#],Union@@primeMS/@primeMS[#]]=={}&]
A324756
Number of integer partitions of n containing no prime indices of the parts.
Original entry on oeis.org
1, 1, 2, 2, 4, 3, 7, 7, 9, 11, 16, 16, 24, 25, 34, 39, 50, 54, 70, 79, 96, 111, 135, 152, 186, 208, 249, 285, 335, 377, 448, 506, 588, 664, 777, 873, 1010, 1139, 1309, 1471, 1697, 1890, 2175, 2435, 2772, 3106, 3532, 3941, 4478, 4995, 5643, 6297, 7107, 7897
Offset: 0
The a(1) = 1 through a(8) = 9 integer partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (111) (22) (311) (33) (43) (44)
(31) (11111) (42) (52) (71)
(1111) (51) (331) (422)
(222) (511) (2222)
(3111) (31111) (3311)
(111111) (1111111) (5111)
(311111)
(11111111)
Cf.
A000720,
A000837,
A001462,
A051424,
A112798,
A276625,
A304360,
A306844,
A324764,
A324742,
A324753.
-
Table[Length[Select[IntegerPartitions[n],Intersection[#,PrimePi/@First/@Join@@FactorInteger/@#]=={}&]],{n,0,30}]
A324764
Number of anti-transitive rooted identity trees with n nodes.
Original entry on oeis.org
1, 1, 1, 1, 3, 4, 9, 20, 41, 89, 196, 443, 987, 2246, 5114, 11757, 27122, 62898, 146392, 342204, 802429, 1887882
Offset: 1
The a(1) = 1 through a(7) = 9 anti-transitive rooted identity trees:
o (o) ((o)) (((o))) ((o(o))) (((o(o)))) ((o(o(o))))
(o((o))) ((o((o)))) (o((o(o))))
((((o)))) (o(((o)))) ((((o(o)))))
(((((o))))) (((o)((o))))
(((o((o)))))
((o)(((o))))
((o(((o)))))
(o((((o)))))
((((((o))))))
Cf.
A324694,
A324751,
A324756,
A324758,
A324765,
A324767,
A324768,
A324770,
A324839,
A324840,
A324844.
-
idall[n_]:=If[n==1,{{}},Select[Union[Sort/@Join@@(Tuples[idall/@#]&/@IntegerPartitions[n-1])],UnsameQ@@#&]];
Table[Length[Select[idall[n],Intersection[Union@@#,#]=={}&]],{n,10}]
A324741
Number of subsets of {1...n} containing no prime indices of the elements.
Original entry on oeis.org
1, 2, 3, 5, 8, 13, 19, 30, 54, 96, 156, 248, 440, 688, 1120, 1864, 3664, 5856, 11232, 16896, 31296, 53952, 91008, 137472, 270528, 516720, 863088, 1710816, 3173856, 4836672, 9329472, 14897376, 29788128, 52256448, 88429248, 166037184, 331648704, 497685888, 829449600
Offset: 0
The a(0) = 1 through a(6) = 19 subsets:
{} {} {} {} {} {} {}
{1} {1} {1} {1} {1} {1}
{2} {2} {2} {2} {2}
{3} {3} {3} {3}
{1,3} {4} {4} {4}
{1,3} {5} {5}
{2,4} {1,3} {6}
{3,4} {1,5} {1,3}
{2,4} {1,5}
{2,5} {2,4}
{3,4} {2,5}
{4,5} {3,4}
{2,4,5} {3,6}
{4,5}
{4,6}
{5,6}
{2,4,5}
{3,4,6}
{4,5,6}
An example for n = 20 is {5,6,7,9,10,12,14,15,16,19,20}, with prime indices:
5: {3}
6: {1,2}
7: {4}
9: {2,2}
10: {1,3}
12: {1,1,2}
14: {1,4}
15: {2,3}
16: {1,1,1,1}
19: {8}
20: {1,1,3}
None of these prime indices {1,2,3,4,8} belong to the subset, as required.
The maximal case is
A324743. The strict integer partition version is
A324751. The integer partition version is
A324756. The Heinz number version is
A324758. An infinite version is
A304360.
Cf.
A000720,
A001462,
A007097,
A076078,
A084422,
A112798,
A276625,
A279861,
A290689,
A290822,
A304360,
A306844.
-
Table[Length[Select[Subsets[Range[n]],Intersection[#,PrimePi/@First/@Join@@FactorInteger/@#]=={}&]],{n,0,10}]
-
pset(n)={my(b=0,f=factor(n)[,1]); sum(i=1, #f, 1<<(primepi(f[i])))}
a(n)={my(p=vector(n,k,pset(k)), d=0); for(i=1, #p, d=bitor(d, p[i]));
((k,b)->if(k>#p, 1, my(t=self()(k+1,b)); if(!bitand(p[k], b), t+=if(bittest(d,k), self()(k+1, b+(1<Andrew Howroyd, Aug 16 2019
A324765
Number of recursively anti-transitive rooted trees with n nodes.
Original entry on oeis.org
1, 1, 2, 3, 6, 11, 26, 52, 119, 266, 618, 1432, 3402, 8093, 19505, 47228, 115244, 282529, 696388, 1723400
Offset: 1
The a(1) = 1 through a(6) = 11 recursively anti-transitive rooted trees:
o (o) (oo) (ooo) (oooo) (ooooo)
((o)) ((oo)) ((ooo)) ((oooo))
(((o))) (((oo))) (((ooo)))
((o)(o)) ((o)(oo))
(o((o))) (o((oo)))
((((o)))) (oo((o)))
((((oo))))
(((o)(o)))
((o((o))))
(o(((o))))
(((((o)))))
-
nallt[n_]:=Select[Union[Sort/@Join@@(Tuples[nallt/@#]&/@IntegerPartitions[n-1])],Intersection[Union@@#,#]=={}&];
Table[Length[nallt[n]],{n,10}]
A324743
Number of maximal subsets of {1...n} containing no prime indices of the elements.
Original entry on oeis.org
1, 1, 2, 2, 3, 4, 5, 8, 8, 8, 8, 12, 12, 18, 18, 19, 19, 30, 30, 54, 54, 54, 54, 96, 96, 96, 96, 96, 96, 156, 156, 244, 244, 248, 248, 248, 248, 440, 440, 440, 440, 688, 688, 1120, 1120, 1120, 1120, 1864, 1864, 1864, 1864, 1864, 1864, 3664, 3664, 3664, 3664, 3664
Offset: 0
The a(0) = 1 through a(8) = 8 maximal subsets:
{} {1} {1} {2} {1,3} {1,3} {1,3} {1,3,7} {1,3,7}
{2} {1,3} {2,4} {1,5} {1,5} {1,5,7} {1,5,7}
{3,4} {3,4} {2,4,5} {2,4,5} {2,4,5,8}
{2,4,5} {3,4,6} {2,5,7} {2,5,7,8}
{4,5,6} {3,4,6} {3,4,6,8}
{3,6,7} {3,6,7,8}
{4,5,6} {4,5,6,8}
{5,6,7} {5,6,7,8}
An example for n = 15 is {1,5,7,9,13,15}, with prime indices:
1: {}
5: {3}
7: {4}
9: {2,2}
13: {6}
15: {2,3}
None of these prime indices {2,3,4,6} belong to the subset, as required.
The non-maximal case is
A324741. The case for subsets of {2...n} is
A324763.
Cf.
A000720,
A001462,
A007097,
A084422,
A085945,
A112798,
A276625,
A290689,
A290822,
A304360,
A306844,
A320426,
A324764.
-
maxim[s_]:=Complement[s,Last/@Select[Tuples[s,2],UnsameQ@@#&&SubsetQ@@#&]];
Table[Length[maxim[Select[Subsets[Range[n]],Intersection[#,PrimePi/@First/@Join@@FactorInteger/@#]=={}&]]],{n,0,10}]
-
pset(n)={my(b=0, f=factor(n)[, 1]); sum(i=1, #f, 1<<(primepi(f[i])))}
a(n)={my(p=vector(n, k, pset(k)), d=0); for(i=1, #p, d=bitor(d, p[i]));
my(ismax(b)=my(e=0); forstep(k=#p, 1, -1, if(bittest(b,k), e=bitor(e,p[k]), if(!bittest(e,k) && !bitand(p[k], b), return(0)) )); 1);
((k, b)->if(k>#p, ismax(b), my(f=!bitand(p[k], b)); if(!f || bittest(d, k), self()(k+1, b)) + if(f, self()(k+1, b+(1<Andrew Howroyd, Aug 26 2019
A324840
Number of fully recursively anti-transitive rooted trees with n nodes.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 14, 23, 46, 85, 165, 313, 625, 1225, 2459, 4919, 9928, 20078, 40926, 83592
Offset: 1
The a(1) = 1 through a(7) = 14 fully recursively anti-transitive rooted trees:
o (o) (oo) (ooo) (oooo) (ooooo) (oooooo)
((o)) ((oo)) ((ooo)) ((oooo)) ((ooooo))
(((o))) (((oo))) (((ooo))) (((oooo)))
((o)(o)) ((o)(oo)) ((o)(ooo))
((((o)))) ((((oo)))) ((oo)(oo))
(((o)(o))) ((((ooo))))
(((((o))))) (((o))(oo))
(((o)(oo)))
((o)((oo)))
((o)(o)(o))
(((((oo)))))
((((o)(o))))
(((o))((o)))
((((((o))))))
-
dallt[n_]:=Select[Union[Sort/@Join@@(Tuples[dallt/@#]&/@IntegerPartitions[n-1])],Intersection[Union@@Rest[FixedPointList[Union@@#&,#]],#]=={}&];
Table[Length[dallt[n]],{n,10}]
A324768
Number of fully anti-transitive rooted trees with n nodes.
Original entry on oeis.org
1, 1, 2, 3, 6, 11, 27, 60, 152, 376, 968, 2492, 6549, 17259, 46000, 123214, 332304, 900406, 2451999, 6703925
Offset: 1
The a(1) = 1 through a(6) = 11 rooted trees:
o (o) (oo) (ooo) (oooo) (ooooo)
((o)) ((oo)) ((ooo)) ((oooo))
(((o))) (((oo))) (((ooo)))
((o)(o)) ((o)(oo))
((o(o))) ((o(oo)))
((((o)))) ((oo(o)))
((((oo))))
(((o)(o)))
(((o(o))))
((o((o))))
(((((o)))))
-
rtall[n_]:=Union[Sort/@Join@@(Tuples[rtall/@#]&/@IntegerPartitions[n-1])];
Table[Length[Select[rtall[n],Intersection[Union@@Rest[FixedPointList[Union@@#&,#]],#]=={}&]],{n,10}]
A324742
Number of subsets of {2...n} containing no prime indices of the elements.
Original entry on oeis.org
1, 2, 3, 6, 10, 16, 24, 48, 84, 144, 228, 420, 648, 1080, 1800, 3600, 5760, 11136, 16704, 31104, 53568, 90624, 136896, 269952, 515712, 862080, 1708800, 3171840, 4832640, 9325440, 14890752, 29781504, 52245504, 88418304, 166017024, 331628544, 497645568, 829409280
Offset: 1
The a(1) = 1 through a(6) = 16 subsets:
{} {} {} {} {} {}
{2} {2} {2} {2} {2}
{3} {3} {3} {3}
{4} {4} {4}
{2,4} {5} {5}
{3,4} {2,4} {6}
{2,5} {2,4}
{3,4} {2,5}
{4,5} {3,4}
{2,4,5} {3,6}
{4,5}
{4,6}
{5,6}
{2,4,5}
{3,4,6}
{4,5,6}
An example for n = 20 is {4,5,6,12,17,18,19}, with prime indices:
4: {1,1}
5: {3}
6: {1,2}
12: {1,1,2}
17: {7}
18: {1,2,2}
19: {8}
None of these prime indices {1,2,3,7,8} belong to the set, as required.
The maximal case is
A324763. The version for subsets of {1...n} is
A324741. The strict integer partition version is
A324752. The integer partition version is
A324757. The Heinz number version is
A324761. An infinite version is
A304360.
Cf.
A000720,
A001462,
A007097,
A076078,
A084422,
A085945,
A112798,
A276625,
A290689,
A290822,
A306844,
A324764.
-
Table[Length[Select[Subsets[Range[2,n]],Intersection[#,PrimePi/@First/@Join@@FactorInteger/@#]=={}&]],{n,10}]
-
pset(n)={my(b=0,f=factor(n)[,1]); sum(i=1, #f, 1<<(primepi(f[i])))}
a(n)={my(p=vector(n-1,k,pset(k+1)>>1), d=0); for(i=1, #p, d=bitor(d, p[i]));
((k,b)->if(k>#p, 1, my(t=self()(k+1,b)); if(!bitand(p[k], b), t+=if(bittest(d,k), self()(k+1, b+(1<Andrew Howroyd, Aug 16 2019
Showing 1-10 of 23 results.
Comments