cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 23 results. Next

A306844 Number of anti-transitive rooted trees with n nodes.

Original entry on oeis.org

1, 1, 2, 3, 7, 14, 36, 83, 212, 532, 1379, 3577, 9444, 25019, 66943, 179994, 487031, 1323706, 3614622, 9907911
Offset: 1

Views

Author

Gus Wiseman, Mar 13 2019

Keywords

Comments

A rooted tree is anti-transitive if the subbranches are disjoint from the branches, i.e., no branch of a branch is a branch.

Examples

			The a(1) = 1 through a(6) = 14 anti-transitive rooted trees:
  o  (o)  (oo)   (ooo)    (oooo)     (ooooo)
          ((o))  ((oo))   ((ooo))    ((oooo))
                 (((o)))  (((oo)))   (((ooo)))
                          ((o)(o))   ((o)(oo))
                          ((o(o)))   ((o(oo)))
                          (o((o)))   ((oo(o)))
                          ((((o))))  (o((oo)))
                                     (oo((o)))
                                     ((((oo))))
                                     (((o)(o)))
                                     (((o(o))))
                                     ((o((o))))
                                     (o(((o))))
                                     (((((o)))))
		

Crossrefs

Programs

  • Mathematica
    rtall[n_]:=Union[Sort/@Join@@(Tuples[rtall/@#]&/@IntegerPartitions[n-1])];
    Table[Length[Select[rtall[n],Intersection[Union@@#,#]=={}&]],{n,10}]

Extensions

a(16)-a(20) from Jinyuan Wang, Jun 20 2020

A324758 Heinz numbers of integer partitions containing no prime indices of the parts.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 16, 17, 19, 20, 21, 22, 23, 25, 27, 29, 31, 32, 33, 34, 35, 37, 40, 41, 43, 44, 46, 47, 49, 50, 51, 53, 57, 59, 61, 62, 63, 64, 65, 67, 68, 71, 73, 77, 79, 80, 81, 82, 83, 85, 87, 88, 89, 91, 92, 93, 94, 95, 97, 99, 100, 101
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
These could be described as anti-transitive numbers (cf. A290822), as they are numbers x such that if prime(y) divides x and prime(z) divides y, then prime(z) does not divide x.
Also numbers n such that A003963(n) is coprime to n.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   3: {2}
   4: {1,1}
   5: {3}
   7: {4}
   8: {1,1,1}
   9: {2,2}
  10: {1,3}
  11: {5}
  13: {6}
  16: {1,1,1,1}
  17: {7}
  19: {8}
  20: {1,1,3}
  21: {2,4}
  22: {1,5}
  23: {9}
  25: {3,3}
  27: {2,2,2}
		

Crossrefs

The subset version is A324741, with maximal case A324743. The strict integer partition version is A324751. The integer partition version is A324756. An infinite version is A324695.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Intersection[primeMS[#],Union@@primeMS/@primeMS[#]]=={}&]

A324756 Number of integer partitions of n containing no prime indices of the parts.

Original entry on oeis.org

1, 1, 2, 2, 4, 3, 7, 7, 9, 11, 16, 16, 24, 25, 34, 39, 50, 54, 70, 79, 96, 111, 135, 152, 186, 208, 249, 285, 335, 377, 448, 506, 588, 664, 777, 873, 1010, 1139, 1309, 1471, 1697, 1890, 2175, 2435, 2772, 3106, 3532, 3941, 4478, 4995, 5643, 6297, 7107, 7897
Offset: 0

Views

Author

Gus Wiseman, Mar 17 2019

Keywords

Comments

These could be described as anti-transitive integer partitions.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(1) = 1 through a(8) = 9 integer partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (311)    (33)      (43)       (44)
                    (31)    (11111)  (42)      (52)       (71)
                    (1111)           (51)      (331)      (422)
                                     (222)     (511)      (2222)
                                     (3111)    (31111)    (3311)
                                     (111111)  (1111111)  (5111)
                                                          (311111)
                                                          (11111111)
		

Crossrefs

The subset version is A324741, with maximal case A324743. The strict case is A324751. The Heinz number version is A324758. An infinite version is A324695.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Intersection[#,PrimePi/@First/@Join@@FactorInteger/@#]=={}&]],{n,0,30}]

A324764 Number of anti-transitive rooted identity trees with n nodes.

Original entry on oeis.org

1, 1, 1, 1, 3, 4, 9, 20, 41, 89, 196, 443, 987, 2246, 5114, 11757, 27122, 62898, 146392, 342204, 802429, 1887882
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2019

Keywords

Comments

A rooted identity tree is an unlabeled rooted tree with no repeated branches directly under the same root. It is anti-transitive if the branches of the branches of the root are disjoint from the branches of the root.
Also the number of finitary sets S with n brackets where no element of an element of S is also an element of S. For example, the a(8) = 20 finitary sets are (o = {}):
{{{{{{{o}}}}}}}
{{{{{o,{o}}}}}}
{{{{o,{{o}}}}}}
{{{o,{{{o}}}}}}
{{{o,{o,{o}}}}}
{{{{o},{{o}}}}}
{{o,{{{{o}}}}}}
{{o,{{o,{o}}}}}
{{o,{o,{{o}}}}}
{{{o},{{{o}}}}}
{{{o},{o,{o}}}}
{{o,{o},{{o}}}}
{o,{{{{{o}}}}}}
{o,{{{o,{o}}}}}
{o,{{o,{{o}}}}}
{o,{{o},{{o}}}}
{{o},{{{{o}}}}}
{{o},{{o,{o}}}}
{{o},{o,{{o}}}}
{{{o}},{o,{o}}}

Examples

			The a(1) = 1 through a(7) = 9 anti-transitive rooted identity trees:
  o  (o)  ((o))  (((o)))  ((o(o)))   (((o(o))))   ((o(o(o))))
                          (o((o)))   ((o((o))))   (o((o(o))))
                          ((((o))))  (o(((o))))   ((((o(o)))))
                                     (((((o)))))  (((o)((o))))
                                                  (((o((o)))))
                                                  ((o)(((o))))
                                                  ((o(((o)))))
                                                  (o((((o)))))
                                                  ((((((o))))))
		

Crossrefs

Programs

  • Mathematica
    idall[n_]:=If[n==1,{{}},Select[Union[Sort/@Join@@(Tuples[idall/@#]&/@IntegerPartitions[n-1])],UnsameQ@@#&]];
    Table[Length[Select[idall[n],Intersection[Union@@#,#]=={}&]],{n,10}]

Extensions

a(21)-a(22) from Jinyuan Wang, Jun 20 2020

A324741 Number of subsets of {1...n} containing no prime indices of the elements.

Original entry on oeis.org

1, 2, 3, 5, 8, 13, 19, 30, 54, 96, 156, 248, 440, 688, 1120, 1864, 3664, 5856, 11232, 16896, 31296, 53952, 91008, 137472, 270528, 516720, 863088, 1710816, 3173856, 4836672, 9329472, 14897376, 29788128, 52256448, 88429248, 166037184, 331648704, 497685888, 829449600
Offset: 0

Views

Author

Gus Wiseman, Mar 15 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(0) = 1 through a(6) = 19 subsets:
  {}  {}   {}   {}     {}     {}       {}
      {1}  {1}  {1}    {1}    {1}      {1}
           {2}  {2}    {2}    {2}      {2}
                {3}    {3}    {3}      {3}
                {1,3}  {4}    {4}      {4}
                       {1,3}  {5}      {5}
                       {2,4}  {1,3}    {6}
                       {3,4}  {1,5}    {1,3}
                              {2,4}    {1,5}
                              {2,5}    {2,4}
                              {3,4}    {2,5}
                              {4,5}    {3,4}
                              {2,4,5}  {3,6}
                                       {4,5}
                                       {4,6}
                                       {5,6}
                                       {2,4,5}
                                       {3,4,6}
                                       {4,5,6}
An example for n = 20 is {5,6,7,9,10,12,14,15,16,19,20}, with prime indices:
   5: {3}
   6: {1,2}
   7: {4}
   9: {2,2}
  10: {1,3}
  12: {1,1,2}
  14: {1,4}
  15: {2,3}
  16: {1,1,1,1}
  19: {8}
  20: {1,1,3}
None of these prime indices {1,2,3,4,8} belong to the subset, as required.
		

Crossrefs

The maximal case is A324743. The strict integer partition version is A324751. The integer partition version is A324756. The Heinz number version is A324758. An infinite version is A304360.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],Intersection[#,PrimePi/@First/@Join@@FactorInteger/@#]=={}&]],{n,0,10}]
  • PARI
    pset(n)={my(b=0,f=factor(n)[,1]); sum(i=1, #f, 1<<(primepi(f[i])))}
    a(n)={my(p=vector(n,k,pset(k)), d=0); for(i=1, #p, d=bitor(d, p[i]));
    ((k,b)->if(k>#p, 1, my(t=self()(k+1,b)); if(!bitand(p[k], b), t+=if(bittest(d,k), self()(k+1, b+(1<Andrew Howroyd, Aug 16 2019

Extensions

Terms a(21) and beyond from Andrew Howroyd, Aug 16 2019

A324765 Number of recursively anti-transitive rooted trees with n nodes.

Original entry on oeis.org

1, 1, 2, 3, 6, 11, 26, 52, 119, 266, 618, 1432, 3402, 8093, 19505, 47228, 115244, 282529, 696388, 1723400
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2019

Keywords

Comments

An unlabeled rooted tree is recursively anti-transitive if no branch of a branch of a terminal subtree is a branch of the same subtree.

Examples

			The a(1) = 1 through a(6) = 11 recursively anti-transitive rooted trees:
  o  (o)  (oo)   (ooo)    (oooo)     (ooooo)
          ((o))  ((oo))   ((ooo))    ((oooo))
                 (((o)))  (((oo)))   (((ooo)))
                          ((o)(o))   ((o)(oo))
                          (o((o)))   (o((oo)))
                          ((((o))))  (oo((o)))
                                     ((((oo))))
                                     (((o)(o)))
                                     ((o((o))))
                                     (o(((o))))
                                     (((((o)))))
		

Crossrefs

Programs

  • Mathematica
    nallt[n_]:=Select[Union[Sort/@Join@@(Tuples[nallt/@#]&/@IntegerPartitions[n-1])],Intersection[Union@@#,#]=={}&];
    Table[Length[nallt[n]],{n,10}]

A324743 Number of maximal subsets of {1...n} containing no prime indices of the elements.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 8, 8, 8, 8, 12, 12, 18, 18, 19, 19, 30, 30, 54, 54, 54, 54, 96, 96, 96, 96, 96, 96, 156, 156, 244, 244, 248, 248, 248, 248, 440, 440, 440, 440, 688, 688, 1120, 1120, 1120, 1120, 1864, 1864, 1864, 1864, 1864, 1864, 3664, 3664, 3664, 3664, 3664
Offset: 0

Views

Author

Gus Wiseman, Mar 15 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(0) = 1 through a(8) = 8 maximal subsets:
  {}  {1}  {1}  {2}    {1,3}  {1,3}    {1,3}    {1,3,7}  {1,3,7}
           {2}  {1,3}  {2,4}  {1,5}    {1,5}    {1,5,7}  {1,5,7}
                       {3,4}  {3,4}    {2,4,5}  {2,4,5}  {2,4,5,8}
                              {2,4,5}  {3,4,6}  {2,5,7}  {2,5,7,8}
                                       {4,5,6}  {3,4,6}  {3,4,6,8}
                                                {3,6,7}  {3,6,7,8}
                                                {4,5,6}  {4,5,6,8}
                                                {5,6,7}  {5,6,7,8}
An example for n = 15 is {1,5,7,9,13,15}, with prime indices:
  1: {}
  5: {3}
  7: {4}
  9: {2,2}
  13: {6}
  15: {2,3}
None of these prime indices {2,3,4,6} belong to the subset, as required.
		

Crossrefs

The non-maximal case is A324741. The case for subsets of {2...n} is A324763.

Programs

  • Mathematica
    maxim[s_]:=Complement[s,Last/@Select[Tuples[s,2],UnsameQ@@#&&SubsetQ@@#&]];
    Table[Length[maxim[Select[Subsets[Range[n]],Intersection[#,PrimePi/@First/@Join@@FactorInteger/@#]=={}&]]],{n,0,10}]
  • PARI
    pset(n)={my(b=0, f=factor(n)[, 1]); sum(i=1, #f, 1<<(primepi(f[i])))}
    a(n)={my(p=vector(n, k, pset(k)), d=0); for(i=1, #p, d=bitor(d, p[i]));
    my(ismax(b)=my(e=0); forstep(k=#p, 1, -1, if(bittest(b,k), e=bitor(e,p[k]), if(!bittest(e,k) && !bitand(p[k], b), return(0)) )); 1);
    ((k, b)->if(k>#p, ismax(b), my(f=!bitand(p[k], b)); if(!f || bittest(d, k), self()(k+1, b)) + if(f, self()(k+1, b+(1<Andrew Howroyd, Aug 26 2019

Extensions

Terms a(16) and beyond from Andrew Howroyd, Aug 26 2019

A324840 Number of fully recursively anti-transitive rooted trees with n nodes.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 14, 23, 46, 85, 165, 313, 625, 1225, 2459, 4919, 9928, 20078, 40926, 83592
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2019

Keywords

Comments

An unlabeled rooted tree is fully recursively anti-transitive if no proper terminal subtree of any terminal subtree is a branch of the larger subtree.

Examples

			The a(1) = 1 through a(7) = 14 fully recursively anti-transitive rooted trees:
  o  (o)  (oo)   (ooo)    (oooo)     (ooooo)      (oooooo)
          ((o))  ((oo))   ((ooo))    ((oooo))     ((ooooo))
                 (((o)))  (((oo)))   (((ooo)))    (((oooo)))
                          ((o)(o))   ((o)(oo))    ((o)(ooo))
                          ((((o))))  ((((oo))))   ((oo)(oo))
                                     (((o)(o)))   ((((ooo))))
                                     (((((o)))))  (((o))(oo))
                                                  (((o)(oo)))
                                                  ((o)((oo)))
                                                  ((o)(o)(o))
                                                  (((((oo)))))
                                                  ((((o)(o))))
                                                  (((o))((o)))
                                                  ((((((o))))))
		

Crossrefs

Programs

  • Mathematica
    dallt[n_]:=Select[Union[Sort/@Join@@(Tuples[dallt/@#]&/@IntegerPartitions[n-1])],Intersection[Union@@Rest[FixedPointList[Union@@#&,#]],#]=={}&];
    Table[Length[dallt[n]],{n,10}]

A324768 Number of fully anti-transitive rooted trees with n nodes.

Original entry on oeis.org

1, 1, 2, 3, 6, 11, 27, 60, 152, 376, 968, 2492, 6549, 17259, 46000, 123214, 332304, 900406, 2451999, 6703925
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2019

Keywords

Comments

An unlabeled rooted tree is fully anti-transitive if no proper terminal subtree of any branch of the root is a branch of the root.

Examples

			The a(1) = 1 through a(6) = 11 rooted trees:
  o  (o)  (oo)   (ooo)    (oooo)     (ooooo)
          ((o))  ((oo))   ((ooo))    ((oooo))
                 (((o)))  (((oo)))   (((ooo)))
                          ((o)(o))   ((o)(oo))
                          ((o(o)))   ((o(oo)))
                          ((((o))))  ((oo(o)))
                                     ((((oo))))
                                     (((o)(o)))
                                     (((o(o))))
                                     ((o((o))))
                                     (((((o)))))
		

Crossrefs

Programs

  • Mathematica
    rtall[n_]:=Union[Sort/@Join@@(Tuples[rtall/@#]&/@IntegerPartitions[n-1])];
    Table[Length[Select[rtall[n],Intersection[Union@@Rest[FixedPointList[Union@@#&,#]],#]=={}&]],{n,10}]

Extensions

a(17)-a(20) from Jinyuan Wang, Jun 20 2020

A324742 Number of subsets of {2...n} containing no prime indices of the elements.

Original entry on oeis.org

1, 2, 3, 6, 10, 16, 24, 48, 84, 144, 228, 420, 648, 1080, 1800, 3600, 5760, 11136, 16704, 31104, 53568, 90624, 136896, 269952, 515712, 862080, 1708800, 3171840, 4832640, 9325440, 14890752, 29781504, 52245504, 88418304, 166017024, 331628544, 497645568, 829409280
Offset: 1

Views

Author

Gus Wiseman, Mar 15 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(1) = 1 through a(6) = 16 subsets:
  {}  {}   {}   {}     {}       {}
      {2}  {2}  {2}    {2}      {2}
           {3}  {3}    {3}      {3}
                {4}    {4}      {4}
                {2,4}  {5}      {5}
                {3,4}  {2,4}    {6}
                       {2,5}    {2,4}
                       {3,4}    {2,5}
                       {4,5}    {3,4}
                       {2,4,5}  {3,6}
                                {4,5}
                                {4,6}
                                {5,6}
                                {2,4,5}
                                {3,4,6}
                                {4,5,6}
An example for n = 20 is {4,5,6,12,17,18,19}, with prime indices:
   4: {1,1}
   5: {3}
   6: {1,2}
  12: {1,1,2}
  17: {7}
  18: {1,2,2}
  19: {8}
None of these prime indices {1,2,3,7,8} belong to the set, as required.
		

Crossrefs

The maximal case is A324763. The version for subsets of {1...n} is A324741. The strict integer partition version is A324752. The integer partition version is A324757. The Heinz number version is A324761. An infinite version is A304360.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[2,n]],Intersection[#,PrimePi/@First/@Join@@FactorInteger/@#]=={}&]],{n,10}]
  • PARI
    pset(n)={my(b=0,f=factor(n)[,1]); sum(i=1, #f, 1<<(primepi(f[i])))}
    a(n)={my(p=vector(n-1,k,pset(k+1)>>1), d=0); for(i=1, #p, d=bitor(d, p[i]));
    ((k,b)->if(k>#p, 1, my(t=self()(k+1,b)); if(!bitand(p[k], b), t+=if(bittest(d,k), self()(k+1, b+(1<Andrew Howroyd, Aug 16 2019

Extensions

Terms a(21) and beyond from Andrew Howroyd, Aug 16 2019
Showing 1-10 of 23 results. Next