cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A325231 Numbers of the form 2 * p or 3 * 2^k, p prime, k > 1.

Original entry on oeis.org

6, 10, 12, 14, 22, 24, 26, 34, 38, 46, 48, 58, 62, 74, 82, 86, 94, 96, 106, 118, 122, 134, 142, 146, 158, 166, 178, 192, 194, 202, 206, 214, 218, 226, 254, 262, 274, 278, 298, 302, 314, 326, 334, 346, 358, 362, 382, 384, 386, 394, 398, 422, 446, 454, 458, 466
Offset: 1

Views

Author

Gus Wiseman, Apr 13 2019

Keywords

Comments

Also numbers n such that the sum of prime indices of n minus the greater of the number of prime factors of n counted with multiplicity and the largest prime index of n is 1. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, and their sum is A056239.

Examples

			The sequence of terms together with their prime indices begins:
    6: {1,2}
   10: {1,3}
   12: {1,1,2}
   14: {1,4}
   22: {1,5}
   24: {1,1,1,2}
   26: {1,6}
   34: {1,7}
   38: {1,8}
   46: {1,9}
   48: {1,1,1,1,2}
   58: {1,10}
   62: {1,11}
   74: {1,12}
   82: {1,13}
   86: {1,14}
   94: {1,15}
   96: {1,1,1,1,1,2}
  106: {1,16}
  118: {1,17}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Total[primeMS[#]]-Max[Length[primeMS[#]],Max[primeMS[#]]]==1&]
  • Python
    from sympy import isprime
    A325231_list = [n for n in range(6,10**6) if ((not n % 2) and isprime(n//2)) or (bin(n)[2:4] == '11' and bin(n).count('1') == 2)] # Chai Wah Wu, Apr 16 2019

A325223 Sum of the prime indices of n minus the greater of the number of prime factors of n counted with multiplicity and the largest prime index of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 2, 1, 0, 1, 0, 1, 2, 0, 0, 2, 0, 2, 2, 1, 0, 1, 3, 1, 3, 2, 0, 3, 0, 0, 2, 1, 3, 2, 0, 1, 2, 2, 0, 3, 0, 2, 4, 1, 0, 1, 4, 4, 2, 2, 0, 3, 3, 3, 2, 1, 0, 3, 0, 1, 4, 0, 3, 3, 0, 2, 2, 4, 0, 2, 0, 1, 5, 2, 4, 3, 0, 2, 4, 1, 0, 4, 3, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Apr 12 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.
Also the number of squares in the Young diagram of the integer partition with Heinz number n after the first row or the first column, whichever is larger, is removed. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			88 has 4 prime indices {1,1,1,5} with sum 8 and maximum 5, so a(88) = 8 - max(4,5) = 3.
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Total[primeMS[n]]-Max[Length[primeMS[n]],Max[primeMS[n]]],{n,100}]

Formula

a(n) = A056239(n) - max(A001222(n), A061395(n)) = A056239(n) - A263297(n).

A325234 Heinz numbers of integer partitions with Dyson rank -1.

Original entry on oeis.org

4, 12, 18, 27, 40, 60, 90, 100, 112, 135, 150, 168, 225, 250, 252, 280, 352, 375, 378, 392, 420, 528, 567, 588, 625, 630, 700, 792, 832, 880, 882, 945, 980, 1050, 1188, 1232, 1248, 1320, 1323, 1372, 1470, 1575, 1750, 1782, 1848, 1872, 1936, 1980, 2058, 2080
Offset: 1

Views

Author

Gus Wiseman, Apr 13 2019

Keywords

Comments

Numbers whose maximum prime index is one fewer than their number of prime indices counted with multiplicity.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
     4: {1,1}
    12: {1,1,2}
    18: {1,2,2}
    27: {2,2,2}
    40: {1,1,1,3}
    60: {1,1,2,3}
    90: {1,2,2,3}
   100: {1,1,3,3}
   112: {1,1,1,1,4}
   135: {2,2,2,3}
   150: {1,2,3,3}
   168: {1,1,1,2,4}
   225: {2,2,3,3}
   250: {1,3,3,3}
   252: {1,1,2,2,4}
   280: {1,1,1,3,4}
   352: {1,1,1,1,1,5}
   375: {2,3,3,3}
   378: {1,2,2,2,4}
   392: {1,1,1,4,4}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],PrimePi[FactorInteger[#][[-1,1]]]-PrimeOmega[#]==-1&]

A325235 Heinz numbers of integer partitions with Dyson rank 1 or -1.

Original entry on oeis.org

3, 4, 10, 12, 15, 18, 25, 27, 28, 40, 42, 60, 63, 70, 88, 90, 98, 100, 105, 112, 132, 135, 147, 150, 168, 175, 198, 208, 220, 225, 245, 250, 252, 280, 297, 308, 312, 330, 343, 352, 375, 378, 392, 420, 462, 468, 484, 495, 520, 528, 544, 550, 567, 588, 625, 630
Offset: 1

Views

Author

Gus Wiseman, Apr 13 2019

Keywords

Comments

Numbers whose maximum prime index and number of prime indices counted with multiplicity differ by 1.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
    3: {2}
    4: {1,1}
   10: {1,3}
   12: {1,1,2}
   15: {2,3}
   18: {1,2,2}
   25: {3,3}
   27: {2,2,2}
   28: {1,1,4}
   40: {1,1,1,3}
   42: {1,2,4}
   60: {1,1,2,3}
   63: {2,2,4}
   70: {1,3,4}
   88: {1,1,1,5}
   90: {1,2,2,3}
   98: {1,4,4}
  100: {1,1,3,3}
  105: {2,3,4}
  112: {1,1,1,1,4}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],Abs[PrimePi[FactorInteger[#][[-1,1]]]-PrimeOmega[#]]==1&]

A325228 Number of integer partitions of n such that the lesser of the maximum part and the number of parts is 3.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 6, 9, 13, 16, 20, 24, 28, 32, 38, 42, 48, 54, 60, 66, 74, 80, 88, 96, 104, 112, 122, 130, 140, 150, 160, 170, 182, 192, 204, 216, 228, 240, 254, 266, 280, 294, 308, 322, 338, 352, 368, 384, 400, 416, 434, 450, 468, 486, 504, 522, 542, 560
Offset: 1

Views

Author

Gus Wiseman, Apr 12 2019

Keywords

Examples

			The a(5) = 1 through a(10) = 16 partitions:
  (311)  (321)   (322)    (332)     (333)      (433)
         (411)   (331)    (422)     (432)      (442)
         (3111)  (421)    (431)     (441)      (532)
                 (511)    (521)     (522)      (541)
                 (3211)   (611)     (531)      (622)
                 (31111)  (3221)    (621)      (631)
                          (3311)    (711)      (721)
                          (32111)   (3222)     (811)
                          (311111)  (3321)     (3322)
                                    (32211)    (3331)
                                    (33111)    (32221)
                                    (321111)   (33211)
                                    (3111111)  (322111)
                                               (331111)
                                               (3211111)
                                               (31111111)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Min[Length[#],Max[#]]==3&]],{n,30}]
Previous Showing 11-15 of 15 results.