A325245
Number of integer partitions of n with adjusted frequency depth 3.
Original entry on oeis.org
0, 0, 0, 1, 1, 2, 4, 4, 6, 8, 11, 11, 19, 17, 25, 29, 37, 37, 56, 53, 75, 80, 99, 103, 145, 143, 181, 199, 247, 255, 336, 339, 426, 459, 548, 590, 738, 759, 916, 999, 1192, 1259, 1529, 1609, 1915, 2083, 2406, 2589, 3085, 3267, 3809, 4134, 4763, 5119, 5964
Offset: 0
The a(3) = 1 through a(10) = 11 partitions:
(21) (31) (32) (42) (43) (53) (54) (64)
(41) (51) (52) (62) (63) (73)
(321) (61) (71) (72) (82)
(2211) (421) (431) (81) (91)
(521) (432) (532)
(3311) (531) (541)
(621) (631)
(222111) (721)
(3322)
(4321)
(4411)
Cf.
A008284,
A047966,
A116608,
A127002,
A181819,
A182850,
A323014,
A323023,
A325239,
A325246,
A325254,
A325268,
A325280.
-
fdadj[ptn_List]:=If[ptn=={},0,Length[NestWhileList[Sort[Length/@Split[#]]&,ptn,Length[#]>1&]]];
Table[Length[Select[IntegerPartitions[n],fdadj[#]==3&]],{n,0,30}]
A353842
Last part of the trajectory of the partition run-sum transformation of n, using Heinz numbers.
Original entry on oeis.org
1, 2, 3, 3, 5, 6, 7, 5, 7, 10, 11, 7, 13, 14, 15, 7, 17, 14, 19, 15, 21, 22, 23, 15, 13, 26, 13, 21, 29, 30, 31, 11, 33, 34, 35, 21, 37, 38, 39, 13, 41, 42, 43, 33, 35, 46, 47, 21, 19, 26, 51, 39, 53, 26, 55, 35, 57, 58, 59, 35, 61, 62, 19, 13, 65, 66, 67, 51
Offset: 1
The partition run-sum trajectory of 87780 is: 87780 -> 65835 -> 51205 -> 19855 -> 2915, so a(87780) = 2915.
The fixed points and image are
A005117.
Other sequences pertaining to partition trajectory are
A353841-
A353846.
A353832 represents the operation of taking run-sums of a partition.
-
Table[NestWhile[Times@@Prime/@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>PrimePi[p]*k]&,n,!SquareFreeQ[#]&],{n,100}]
A353844
Starting with the multiset of prime indices of n, repeatedly take the multiset of run-sums until you reach a squarefree number. This number is prime (or 1) iff n belongs to the sequence.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 40, 41, 43, 47, 49, 53, 59, 61, 63, 64, 67, 71, 73, 79, 81, 83, 84, 89, 97, 101, 103, 107, 109, 112, 113, 121, 125, 127, 128, 131, 137, 139, 144, 149, 151, 157, 163, 167, 169, 173, 179
Offset: 1
The terms together with their prime indices begin:
1: {} 25: {3,3} 64: {1,1,1,1,1,1}
2: {1} 27: {2,2,2} 67: {19}
3: {2} 29: {10} 71: {20}
4: {1,1} 31: {11} 73: {21}
5: {3} 32: {1,1,1,1,1} 79: {22}
7: {4} 37: {12} 81: {2,2,2,2}
8: {1,1,1} 40: {1,1,1,3} 83: {23}
9: {2,2} 41: {13} 84: {1,1,2,4}
11: {5} 43: {14} 89: {24}
12: {1,1,2} 47: {15} 97: {25}
13: {6} 49: {4,4} 101: {26}
16: {1,1,1,1} 53: {16} 103: {27}
17: {7} 59: {17} 107: {28}
19: {8} 61: {18} 109: {29}
23: {9} 63: {2,2,4} 112: {1,1,1,1,4}
The trajectory 60 -> 45 -> 35 ends in a nonprime number 35, so 60 is not in the sequence.
The trajectory 84 -> 63 -> 49 -> 19 ends in a prime number 19, so 84 is in the sequence.
A304442 counts partitions with all equal run-sums.
A353851 counts compositions with all equal run-sums, ranked by
A353848.
A353832 represents the operation of taking run-sums of a partition.
A353838 ranks partitions with all distinct run-sums, counted by
A353837.
Cf.
A005811,
A073093,
A130091,
A181819,
A182857,
A304660,
A325239,
A325277,
A353839,
A353862,
A353867.
-
ope[n_]:=Times@@Prime/@Cases[If[n==1,{},FactorInteger[n]],{p_,k_}:>PrimePi[p]*k];
Select[Range[100],#==1||PrimeQ[NestWhile[ope,#,!SquareFreeQ[#]&]]&]
A353845
Number of integer partitions of n such that if you repeatedly take the multiset of run-sums (or condensation), you eventually reach an empty set or singleton.
Original entry on oeis.org
1, 1, 2, 2, 4, 2, 5, 2, 8, 3, 5, 2, 15, 2, 5, 4, 18, 2, 13, 2, 14, 4, 5, 2, 62, 3, 5, 5, 14, 2, 18, 2, 48, 4, 5, 4, 71, 2, 5, 4, 54, 2, 18, 2, 14, 10, 5, 2, 374, 3, 9, 4, 14, 2, 37, 4, 54, 4, 5, 2, 131
Offset: 0
The a(1) = 1 through a(8) = 8 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (111) (22) (11111) (33) (1111111) (44)
(211) (222) (422)
(1111) (3111) (2222)
(111111) (4211)
(41111)
(221111)
(11111111)
For example, the partition (3,2,2,2,1,1,1) has trajectory: (1,1,1,2,2,2,3) -> (3,3,6) -> (6,6) -> (12), so is counted under a(12).
Dominated by
A018818 (partitions into divisors).
The version for compositions is
A353858.
A353832 represents the operation of taking run-sums of a partition.
A353837 counts partitions with all distinct run-sums, ranked by
A353838.
Cf.
A000041,
A008284,
A181819,
A225485,
A325239,
A325277,
A325280,
A326370,
A353834,
A353839,
A353865.
-
Table[Length[Select[IntegerPartitions[n], Length[NestWhile[Sort[Total/@Split[#]]&,#,!UnsameQ@@#&]]<=1&]],{n,0,30}]
A353510
Square array A(n,k), n >= 1, k >= 0, with A(n,0) = n, and for k > 0, A(n,k) = A181819(A(n,k-1)), read by descending antidiagonals.
Original entry on oeis.org
1, 1, 2, 1, 2, 3, 1, 2, 2, 4, 1, 2, 2, 3, 5, 1, 2, 2, 2, 2, 6, 1, 2, 2, 2, 2, 4, 7, 1, 2, 2, 2, 2, 3, 2, 8, 1, 2, 2, 2, 2, 2, 2, 5, 9, 1, 2, 2, 2, 2, 2, 2, 2, 3, 10, 1, 2, 2, 2, 2, 2, 2, 2, 2, 4, 11, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 12, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 13, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 14
Offset: 1
The top left {0..6} x {1..16} corner of the array:
1, 1, 1, 1, 1, 1, 1,
2, 2, 2, 2, 2, 2, 2,
3, 2, 2, 2, 2, 2, 2,
4, 3, 2, 2, 2, 2, 2,
5, 2, 2, 2, 2, 2, 2,
6, 4, 3, 2, 2, 2, 2,
7, 2, 2, 2, 2, 2, 2,
8, 5, 2, 2, 2, 2, 2,
9, 3, 2, 2, 2, 2, 2,
10, 4, 3, 2, 2, 2, 2,
11, 2, 2, 2, 2, 2, 2,
12, 6, 4, 3, 2, 2, 2,
13, 2, 2, 2, 2, 2, 2,
14, 4, 3, 2, 2, 2, 2,
15, 4, 3, 2, 2, 2, 2,
16, 7, 2, 2, 2, 2, 2,
This is a full square array version of irregular triangle
A325239, which after 1, lists the terms on each row only up to the first 2.
-
f[n_] := If[n == 1, 1, Times @@ Prime[FactorInteger[n][[All, -1]]]]; Table[Function[m, Which[m == 1, a[1, k] = 1, k == 0, a[m, 0] = m, True, Set[a[m, k], f[a[m, k - 1]]]]][n - k + 1], {n, 0, 13}, {k, n, 0, -1}] // Flatten (* Michael De Vlieger, Apr 28 2022 *)
-
up_to = 105;
A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2])));
A353510sq(n, k) = { while(k, n = A181819(n); k--); (n); };
A353510list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, forstep(col=a-1,0,-1, i++; if(i > up_to, return(v)); v[i] = A353510sq(a-col,col))); (v); };
v353510 = A353510list(up_to);
A353510(n) = v353510[n];
A375513
Irregular triangle read by rows in which row n lists the iterates of the sigma_0(x) map starting at n, until a fixed point is reached, where sigma_0(x) is the number-of-divisors function (A000005).
Original entry on oeis.org
1, 2, 3, 2, 4, 3, 2, 5, 2, 6, 4, 3, 2, 7, 2, 8, 4, 3, 2, 9, 3, 2, 10, 4, 3, 2, 11, 2, 12, 6, 4, 3, 2, 13, 2, 14, 4, 3, 2, 15, 4, 3, 2, 16, 5, 2, 17, 2, 18, 6, 4, 3, 2, 19, 2, 20, 6, 4, 3, 2, 21, 4, 3, 2, 22, 4, 3, 2, 23, 2, 24, 8, 4, 3, 2, 25, 3, 2, 26, 4, 3, 2
Offset: 1
Triangle begins:
1;
2;
3, 2;
4, 3, 2;
5, 2;
6, 4, 3, 2;
7, 2;
8, 4, 3, 2;
9, 3, 2;
10, 4, 3, 2;
11, 2;
12, 6, 4, 3, 2;
...
-
Array[Most[FixedPointList[DivisorSigma[0, #] &, #]] &, 30]
-
row(n) = if (n==1, [1], my(list=List()); listput(list, n); while (n != 2, n = numdiv(n); listput(list, n)); Vec(list)); \\ Michel Marcus, Aug 21 2024
Comments