A325609 Unsorted q-signature of n!. Irregular triangle read by rows where T(n,k) is the multiplicity of q(k) in the factorization of n! into factors q(i) = prime(i)/i.
1, 2, 1, 4, 1, 5, 2, 1, 7, 3, 1, 9, 3, 1, 1, 12, 3, 1, 1, 14, 5, 1, 1, 16, 6, 2, 1, 17, 7, 3, 1, 1, 20, 8, 3, 1, 1, 22, 9, 3, 1, 1, 1, 25, 9, 3, 2, 1, 1, 27, 11, 4, 2, 1, 1, 31, 11, 4, 2, 1, 1, 33, 11, 4, 3, 1, 1, 1, 36, 13, 4, 3, 1, 1, 1, 39, 13, 4, 3, 1, 1, 1, 1
Offset: 1
Examples
We have 10! = q(1)^16 q(2)^6 q(3)^2 q(4), so row n = 10 is (16,6,2,1). Triangle begins: {} 1 2 1 4 1 5 2 1 7 3 1 9 3 1 1 12 3 1 1 14 5 1 1 16 6 2 1 17 7 3 1 1 20 8 3 1 1 22 9 3 1 1 1 25 9 3 2 1 1 27 11 4 2 1 1 31 11 4 2 1 1 33 11 4 3 1 1 1 36 13 4 3 1 1 1 39 13 4 3 1 1 1 1 42 14 5 3 1 1 1 1
Programs
-
Mathematica
difac[n_]:=If[n==1,{},With[{i=PrimePi[FactorInteger[n][[1,1]]]},Sort[Prepend[difac[n*i/Prime[i]],i]]]]; Table[Length/@Split[difac[n!]],{n,20}]
Comments