A362048
Number of integer partitions of n such that (length) <= 2*(median).
Original entry on oeis.org
1, 2, 2, 3, 4, 6, 8, 12, 15, 20, 25, 33, 41, 53, 66, 85, 105, 134, 164, 205, 250, 308, 373, 456, 549, 666, 799, 963, 1152, 1382, 1645, 1965, 2330, 2767, 3269, 3865, 4546, 5353, 6274, 7357, 8596, 10046, 11700, 13632, 15834, 18394, 21312, 24690, 28534, 32974
Offset: 1
The a(1) = 1 through a(9) = 15 partitions:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(11) (21) (22) (32) (33) (43) (44) (54)
(31) (41) (42) (52) (53) (63)
(221) (51) (61) (62) (72)
(222) (322) (71) (81)
(321) (331) (332) (333)
(421) (422) (432)
(2221) (431) (441)
(521) (522)
(2222) (531)
(3221) (621)
(3311) (3222)
(3321)
(4221)
(4311)
For maximum instead of median we have
A237755.
For minimum instead of median we have
A237800.
For maximum instead of length we have
A361848.
A000975 counts subsets with integer median.
A363223
Numbers with bigomega equal to median prime index.
Original entry on oeis.org
2, 9, 10, 50, 70, 75, 105, 110, 125, 130, 165, 170, 175, 190, 195, 230, 255, 275, 285, 290, 310, 325, 345, 370, 410, 425, 430, 435, 465, 470, 475, 530, 555, 575, 590, 610, 615, 645, 670, 686, 705, 710, 725, 730, 775, 790, 795, 830, 885, 890, 915, 925, 970
Offset: 1
The terms together with their prime indices begin:
2: {1}
9: {2,2}
10: {1,3}
50: {1,3,3}
70: {1,3,4}
75: {2,3,3}
105: {2,3,4}
110: {1,3,5}
125: {3,3,3}
130: {1,3,6}
165: {2,3,5}
170: {1,3,7}
175: {3,3,4}
Partitions of this type are counted by
A361800.
A000975 counts subsets with integer median.
A359908 lists numbers whose prime indices have integer median.
A360005 gives twice median of prime indices.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1000],PrimeOmega[#]==Median[prix[#]]&]
A360683
Number of integer partitions of n whose second differences sum to 0, meaning either there is only one part, or the first two parts have the same difference as the last two parts.
Original entry on oeis.org
1, 1, 2, 3, 4, 4, 8, 6, 11, 12, 17, 14, 32, 23, 40, 44, 64, 59, 104, 93, 149, 157, 218, 227, 342, 349, 481, 538, 713, 777, 1052, 1145, 1494, 1692, 2130, 2416, 3064, 3449, 4286, 4918, 6028, 6882, 8424, 9620, 11634, 13396, 16022, 18416, 22019, 25248, 29954
Offset: 0
The a(1) = 1 through a(8) = 11 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(111) (31) (41) (42) (52) (53)
(1111) (11111) (51) (61) (62)
(222) (22111) (71)
(321) (1111111) (2222)
(2211) (3221)
(111111) (3311)
(22211)
(221111)
(11111111)
For mean instead of sum we have a(n) -
A008619(n).
For median instead of sum we have
A360682.
A008284 counts partitions by number of parts.
-
Table[Length[Select[IntegerPartitions[n],Total[Differences[#,2]]==0&]],{n,0,30}]
A360689
Number of integer partitions of n whose distinct parts have non-integer median.
Original entry on oeis.org
0, 0, 1, 1, 4, 3, 8, 6, 13, 11, 21, 17, 34, 36, 55, 61, 97, 115, 162, 191, 270, 328, 427, 514, 666, 810, 1027, 1211, 1530, 1832, 2260, 2688, 3342, 3952, 4824, 5746, 7010, 8313, 10116, 11915, 14436, 17074, 20536, 24239, 29053, 34170, 40747, 47865, 56830, 66621
Offset: 1
The a(1) = 0 through a(9) = 13 partitions:
. . (21) (211) (32) (411) (43) (332) (54)
(41) (2211) (52) (611) (63)
(221) (21111) (61) (22211) (72)
(2111) (322) (41111) (81)
(2221) (221111) (441)
(4111) (2111111) (522)
(22111) (3222)
(211111) (6111)
(22221)
(222111)
(411111)
(2211111)
(21111111)
For example, the partition y = (5,3,3,2,1,1) has distinct parts {1,2,3,5}, with median 5/2, so y is counted under a(15).
These partitions have ranks
A360551.
For multiplicities instead of distinct parts we have
A360690, ranks
A360554.
A116608 counts partitions by number of distinct parts.
A360457 gives median of distinct prime indices (times 2).
A361863
Number of set partitions of {1..n} such that the median of medians of the blocks is (n+1)/2.
Original entry on oeis.org
1, 2, 3, 9, 26, 69, 335, 1018, 6629, 22805, 182988, 703745
Offset: 1
The a(1) = 1 through a(4) = 9 set partitions:
{{1}} {{12}} {{123}} {{1234}}
{{1}{2}} {{13}{2}} {{12}{34}}
{{1}{2}{3}} {{124}{3}}
{{13}{24}}
{{134}{2}}
{{14}{23}}
{{1}{23}{4}}
{{14}{2}{3}}
{{1}{2}{3}{4}}
The set partition {{1,4},{2,3}} has medians {5/2,5/2}, with median 5/2, so is counted under a(4).
The set partition {{1,3},{2,4}} has medians {2,3}, with median 5/2, so is counted under a(4).
For mean instead of median we have
A361910.
A361864 counts set partitions with integer median of medians, means
A361865.
A361866 counts set partitions with integer sum of medians, means
A361911.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
Table[Length[Select[sps[Range[n]],(n+1)/2==Median[Median/@#]&]],{n,6}]
A363220
Number of integer partitions of n whose conjugate has the same median.
Original entry on oeis.org
1, 0, 1, 1, 1, 3, 3, 8, 8, 12, 12, 15, 21, 27, 36, 49, 65, 85, 112, 149, 176, 214, 257, 311, 378, 470, 572, 710, 877, 1080, 1322, 1637, 1983, 2416, 2899, 3465, 4107, 4891, 5763, 6820, 8071, 9542, 11289, 13381, 15808, 18710, 22122, 26105, 30737, 36156, 42377
Offset: 1
The partition y = (4,3,1,1) has median 2, and its conjugate (4,2,2,1) also has median 2, so y is counted under a(9).
The a(1) = 1 through a(9) = 8 partitions:
(1) . (21) (22) (311) (321) (511) (332) (333)
(411) (4111) (422) (711)
(3111) (31111) (611) (4221)
(3311) (4311)
(4211) (6111)
(5111) (51111)
(41111) (411111)
(311111) (3111111)
For mean instead of median we have
A047993.
Median of conjugate by rank is
A363219.
These partitions are ranked by
A363261.
A122111 represents partition conjugation.
A325347 counts partitions with integer median.
A352491 gives n minus Heinz number of conjugate.
Cf.
A000975,
A067538,
A114638,
A360068,
A360242,
A360248,
A362617,
A362618,
A362621,
A363223,
A363260.
-
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Table[Length[Select[IntegerPartitions[n],Median[#]==Median[conj[#]]&]],{n,30}]
A364058
Heinz numbers of integer partitions with median > 1. Numbers whose multiset of prime factors has median > 2.
Original entry on oeis.org
3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 85, 86
Offset: 1
The terms together with their prime indices begin:
3: {2} 23: {9} 42: {1,2,4}
5: {3} 25: {3,3} 43: {14}
6: {1,2} 26: {1,6} 45: {2,2,3}
7: {4} 27: {2,2,2} 46: {1,9}
9: {2,2} 29: {10} 47: {15}
10: {1,3} 30: {1,2,3} 49: {4,4}
11: {5} 31: {11} 50: {1,3,3}
13: {6} 33: {2,5} 51: {2,7}
14: {1,4} 34: {1,7} 53: {16}
15: {2,3} 35: {3,4} 54: {1,2,2,2}
17: {7} 36: {1,1,2,2} 55: {3,5}
18: {1,2,2} 37: {12} 57: {2,8}
19: {8} 38: {1,8} 58: {1,10}
21: {2,4} 39: {2,6} 59: {17}
22: {1,5} 41: {13} 60: {1,1,2,3}
These partitions are counted by
A238495.
A360005 gives twice the median of prime indices,
A360459 for prime factors.
-
prifacs[n_]:=If[n==1,{},Flatten[ConstantArray@@@FactorInteger[n]]];
Select[Range[100],Median[prifacs[#]]>2&]
Comments