cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A326130 a(n) = gcd(A000120(n), A294898(n)) = gcd(A000120(n), sigma(n)-A005187(n)).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 3, 1, 1, 2, 1, 2, 3, 1, 2, 1, 2, 1, 3, 2, 1, 1, 2, 2, 1, 1, 2, 3, 4, 4, 5, 1, 2, 2, 1, 1, 3, 1, 2, 2, 1, 3, 2, 1, 4, 4, 1, 2, 1, 1, 2, 3, 4, 4, 1, 1, 2, 2, 1, 4, 5, 1, 2, 1, 2, 2, 3, 2, 3, 1, 2, 1, 3, 1, 2, 3, 2, 4, 1, 2, 1, 1, 2, 1, 2, 4, 1, 1, 4, 2, 5, 4, 1, 1, 2, 2, 3, 1, 2, 1, 4, 4, 1, 1, 2
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(A000120(n), A294898(n)) = gcd(A000120(n), A000203(n)-A005187(n)).

A326140 a(n) = gcd(A318878(n), A318879(n)).

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 6, 1, 5, 2, 10, 2, 12, 2, 6, 1, 16, 1, 18, 2, 10, 2, 22, 2, 19, 2, 14, 6, 28, 6, 30, 1, 18, 2, 22, 1, 36, 2, 22, 2, 40, 2, 42, 2, 12, 2, 46, 2, 41, 1, 30, 6, 52, 2, 38, 2, 34, 2, 58, 6, 60, 2, 22, 1, 46, 6, 66, 2, 42, 2, 70, 1, 72, 2, 26, 6, 58, 2, 78, 2, 41, 2, 82, 2, 62, 2, 54, 2, 88, 6, 70, 2, 58, 2
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2019

Keywords

Crossrefs

Programs

  • PARI
    A326140(n) = { my(t=0, u=0); fordiv(n,d, d -= 2*eulerphi(d); if(d<0, t -= d, u += d)); gcd(t,u); };
    
  • PARI
    A318878(n) = sumdiv(n,d,d=(2*eulerphi(d))-d; (d>0)*d);
    A318879(n) = sumdiv(n,d,d=d-(2*eulerphi(d)); (d>0)*d);
    A326140(n) = gcd(A318878(n), A318879(n));

A126795 a(n) = gcd(n, Product_{p|n} (p+1)), where the product is over the distinct primes p that divide n.

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 12, 1, 2, 3, 1, 1, 6, 1, 2, 1, 2, 1, 12, 1, 2, 1, 4, 1, 6, 1, 1, 3, 2, 1, 12, 1, 2, 1, 2, 1, 6, 1, 4, 3, 2, 1, 12, 1, 2, 3, 2, 1, 6, 1, 8, 1, 2, 1, 12, 1, 2, 1, 1, 1, 6, 1, 2, 3, 2, 1, 12, 1, 2, 3, 4, 1, 6, 1, 2, 1, 2, 1, 12, 1, 2, 3, 4, 1, 18, 7, 4, 1, 2, 5, 12, 1, 2, 3, 2, 1
Offset: 1

Views

Author

Leroy Quet, Mar 14 2007

Keywords

Comments

First occurrence of k: 1, 10, 15, 28, 95, 6, 91, 56, 153, 190, 473, 12, 1339, 182, 285, 496, 1139, 90, 703, 380, ..., . - Robert G. Wilson v

Examples

			The distinct primes that divide 28 are 2 and 7. So a(28) = GCD(28, (2+1)(7+1)) = GCD(28, 24) = 4.
		

Crossrefs

Programs

  • Maple
    with(numtheory): a:=proc(n) local fs: fs:=factorset(n): gcd(n,product(1+fs[i],i=1..nops(fs))) end: seq(a(n),n=1..120); # Emeric Deutsch, Mar 27 2007
  • Mathematica
    f[n_] := GCD[n, Times @@ (First /@ FactorInteger[n] + 1)]; Array[f, 101] (* Robert G. Wilson v *)
  • PARI
    A126795(n) = gcd(n,factorback(apply(p -> p+1,factor(n)[,1]))); \\ Antti Karttunen, Sep 10 2018

Formula

a(n) = gcd(n, A048250(n)).
a(n) = gcd(n, A325313(n)) = gcd(n, A048250(n)-n). - Antti Karttunen, Apr 24 2019

Extensions

More terms from Emeric Deutsch, Mar 27 2007

A325636 a(n) = gcd(2n, sigma(n)).

Original entry on oeis.org

1, 1, 2, 1, 2, 12, 2, 1, 1, 2, 2, 4, 2, 4, 6, 1, 2, 3, 2, 2, 2, 4, 2, 12, 1, 2, 2, 56, 2, 12, 2, 1, 6, 2, 2, 1, 2, 4, 2, 10, 2, 12, 2, 4, 6, 4, 2, 4, 1, 1, 6, 2, 2, 12, 2, 8, 2, 2, 2, 24, 2, 4, 2, 1, 2, 12, 2, 2, 6, 4, 2, 3, 2, 2, 2, 4, 2, 12, 2, 2, 1, 2, 2, 56, 2, 4, 6, 4, 2, 18, 14, 8, 2, 4, 10, 12, 2, 1, 6, 1, 2, 12, 2, 2, 6
Offset: 1

Views

Author

Antti Karttunen, May 21 2019

Keywords

Crossrefs

Cf. A000203, A009194, A033879, A325385, A325635, A325637 (n such that a(n) = 2n).

Programs

  • PARI
    A325636(n) = gcd(n+n,sigma(n));

Formula

a(n) = gcd(2n, A000203(n)).
a(n) = gcd(2n, A033879(n)) = gcd(sigma(n), A033879(n)).

A326069 a(n) = gcd((sigma(n) - sigma(A032742(n))) - n, n - sigma(A032742(n))), where A032742 gives the largest proper divisor of n.

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 6, 1, 5, 2, 10, 4, 12, 2, 3, 1, 16, 1, 18, 2, 1, 2, 22, 4, 19, 2, 14, 4, 28, 6, 30, 1, 3, 2, 1, 1, 36, 2, 1, 2, 40, 2, 42, 4, 3, 2, 46, 4, 41, 1, 3, 2, 52, 2, 1, 8, 1, 2, 58, 12, 60, 2, 1, 1, 1, 6, 66, 2, 3, 2, 70, 1, 72, 2, 2, 4, 1, 2, 78, 2, 41, 2, 82, 4, 1, 2, 3, 4, 88, 6, 7, 4, 1, 2, 5, 4, 96, 1, 3, 1, 100, 6, 102, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Jun 06 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(A326067(n), A326068(n)) = gcd(A326066(n) - n, n - A326065(n)).

A326147 a(n) = gcd(n-A020639(n), sigma(n)-A020639(n)-n), where A020639 gives the smallest prime factor of n, and sigma is the sum of divisors of n.

Original entry on oeis.org

1, 1, 2, 1, 4, 4, 6, 1, 1, 2, 10, 2, 12, 4, 6, 1, 16, 1, 18, 2, 2, 4, 22, 2, 1, 2, 2, 26, 28, 4, 30, 1, 6, 2, 2, 1, 36, 4, 2, 2, 40, 4, 42, 2, 6, 4, 46, 2, 1, 1, 6, 2, 52, 4, 2, 2, 2, 2, 58, 2, 60, 4, 2, 1, 2, 4, 66, 2, 6, 4, 70, 1, 72, 2, 2, 2, 2, 4, 78, 26, 1, 2, 82, 2, 2, 4, 6, 2, 88, 2, 14, 2, 2, 4, 10, 2, 96, 1, 6, 1, 100, 4, 102, 2, 6
Offset: 1

Views

Author

Antti Karttunen, Jun 10 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(n-A020639(n), A000203(n)-A020639(n)-n).
For n > 1, a(n) = gcd(A046666(n), A326146(n)).

A326073 a(n) = gcd(1+n-A020639(n), 1+sigma(n)-A020639(n)-n), where A020639 gives the smallest prime factor of n (and 1 for 1), and sigma is the sum of divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 27, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 7, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 7, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Jun 10 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(1+n-A020639(n), 1+A000203(n)-A020639(n)-n).
Previous Showing 11-17 of 17 results.