A325359
Numbers of the form p^y * 2^z where p is an odd prime, y >= 2, and z >= 0.
Original entry on oeis.org
9, 18, 25, 27, 36, 49, 50, 54, 72, 81, 98, 100, 108, 121, 125, 144, 162, 169, 196, 200, 216, 242, 243, 250, 288, 289, 324, 338, 343, 361, 392, 400, 432, 484, 486, 500, 529, 576, 578, 625, 648, 676, 686, 722, 729, 784, 800, 841, 864, 961, 968, 972, 1000, 1058
Offset: 1
The sequence of terms together with their prime indices begins:
9: {2,2}
18: {1,2,2}
25: {3,3}
27: {2,2,2}
36: {1,1,2,2}
49: {4,4}
50: {1,3,3}
54: {1,2,2,2}
72: {1,1,1,2,2}
81: {2,2,2,2}
98: {1,4,4}
100: {1,1,3,3}
108: {1,1,2,2,2}
121: {5,5}
125: {3,3,3}
144: {1,1,1,1,2,2}
162: {1,2,2,2,2}
169: {6,6}
196: {1,1,4,4}
200: {1,1,1,3,3}
-
N:= 1000: # to get terms <= N
P:= select(isprime, [seq(i,i=3..floor(sqrt(N)),2)]):
B:= map(proc(p) local y; seq(p^y, y=2..floor(log[p](N))) end proc, P):
sort(map(proc(t) local z; seq(2^z*t, z=0..ilog2(N/t)) end proc, B)); # Robert Israel, May 03 2019
-
Select[Range[1000],MatchQ[FactorInteger[2*#],{{2,},{?(#>2&),_?(#>1&)}}]&]
A325397
Heinz numbers of integer partitions whose k-th differences are weakly decreasing for all k >= 0.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 61, 62, 64, 65, 67, 69, 70, 71, 73, 74, 75, 77, 79, 81, 82, 83, 85, 86, 87, 89
Offset: 1
Most small numbers are in the sequence. However, the sequence of non-terms together with their prime indices begins:
12: {1,1,2}
20: {1,1,3}
24: {1,1,1,2}
28: {1,1,4}
36: {1,1,2,2}
40: {1,1,1,3}
42: {1,2,4}
44: {1,1,5}
45: {2,2,3}
48: {1,1,1,1,2}
52: {1,1,6}
56: {1,1,1,4}
60: {1,1,2,3}
63: {2,2,4}
66: {1,2,5}
68: {1,1,7}
72: {1,1,1,2,2}
76: {1,1,8}
78: {1,2,6}
80: {1,1,1,1,3}
The first partition that has weakly decreasing differences (A320466, A325361) but is not represented in this sequence is (3,3,2,1), which has Heinz number 150 and whose first and second differences are (0,-1,-1) and (-1,0) respectively.
Cf.
A056239,
A112798,
A320466,
A320509,
A325353,
A325361,
A325364,
A325389,
A325398,
A325399,
A325400,
A325405,
A325467.
-
primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
Select[Range[100],And@@Table[GreaterEqual@@Differences[primeptn[#],k],{k,0,PrimeOmega[#]}]&]
A329132
Numbers whose augmented differences of prime indices are a periodic sequence.
Original entry on oeis.org
4, 8, 15, 16, 32, 55, 64, 90, 105, 119, 128, 225, 253, 256, 403, 512, 540, 550, 697, 893, 935, 1024, 1155, 1350, 1357, 1666, 1943, 2048, 2263, 3025, 3071, 3150, 3240, 3375, 3451, 3927, 3977, 4096, 4429, 5123, 5500, 5566, 6731, 7735, 8083, 8100, 8192, 9089
Offset: 1
The sequence of terms together with their augmented differences of prime indices begins:
4: (1,1)
8: (1,1,1)
15: (2,2)
16: (1,1,1,1)
32: (1,1,1,1,1)
55: (3,3)
64: (1,1,1,1,1,1)
90: (2,1,2,1)
105: (2,2,2)
119: (4,4)
128: (1,1,1,1,1,1,1)
225: (1,2,1,2)
253: (5,5)
256: (1,1,1,1,1,1,1,1)
403: (6,6)
512: (1,1,1,1,1,1,1,1,1)
540: (2,1,1,2,1,1)
550: (3,1,3,1)
697: (7,7)
893: (8,8)
These are the Heinz numbers of the partitions counted by
A329143.
Numbers whose binary expansion is periodic are
A121016.
Numbers whose prime signature is periodic are
A329140.
Numbers whose differences of prime indices are periodic are
A329134.
Cf.
A000961,
A027375,
A056239,
A112798,
A325356,
A325389,
A325394,
A328594,
A329135,
A329136,
A329139.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
aperQ[q_]:=Array[RotateRight[q,#1]&,Length[q],1,UnsameQ];
aug[y_]:=Table[If[i
A329133
Numbers whose augmented differences of prime indices are an aperiodic sequence.
Original entry on oeis.org
1, 2, 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74
Offset: 1
The sequence of terms together with their augmented differences of prime indices begins:
1: ()
2: (1)
3: (2)
5: (3)
6: (2,1)
7: (4)
9: (1,2)
10: (3,1)
11: (5)
12: (2,1,1)
13: (6)
14: (4,1)
17: (7)
18: (1,2,1)
19: (8)
20: (3,1,1)
21: (3,2)
22: (5,1)
23: (9)
24: (2,1,1,1)
These are the Heinz numbers of the partitions counted by
A329136.
Aperiodic binary words are
A027375.
Aperiodic compositions are
A000740.
Numbers whose binary expansion is aperiodic are
A328594.
Numbers whose prime signature is aperiodic are
A329139.
Numbers whose differences of prime indices are aperiodic are
A329135.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
aperQ[q_]:=Array[RotateRight[q,#1]&,Length[q],1,UnsameQ];
aug[y_]:=Table[If[i
Comments