A325399
Heinz numbers of integer partitions whose k-th differences are strictly decreasing for all k >= 0.
Original entry on oeis.org
1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 70, 71, 73, 74, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 103, 106, 107, 109, 111, 113, 115
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
3: {2}
5: {3}
6: {1,2}
7: {4}
10: {1,3}
11: {5}
13: {6}
14: {1,4}
15: {2,3}
17: {7}
19: {8}
21: {2,4}
22: {1,5}
23: {9}
26: {1,6}
29: {10}
31: {11}
33: {2,5}
Cf.
A056239,
A112798,
A320466,
A320470,
A325358,
A325391,
A325393,
A325396,
A325397,
A325398,
A325400,
A325405,
A325457,
A325467.
-
primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
Select[Range[100],And@@Table[Greater@@Differences[primeptn[#],k],{k,0,PrimeOmega[#]}]&]
A325359
Numbers of the form p^y * 2^z where p is an odd prime, y >= 2, and z >= 0.
Original entry on oeis.org
9, 18, 25, 27, 36, 49, 50, 54, 72, 81, 98, 100, 108, 121, 125, 144, 162, 169, 196, 200, 216, 242, 243, 250, 288, 289, 324, 338, 343, 361, 392, 400, 432, 484, 486, 500, 529, 576, 578, 625, 648, 676, 686, 722, 729, 784, 800, 841, 864, 961, 968, 972, 1000, 1058
Offset: 1
The sequence of terms together with their prime indices begins:
9: {2,2}
18: {1,2,2}
25: {3,3}
27: {2,2,2}
36: {1,1,2,2}
49: {4,4}
50: {1,3,3}
54: {1,2,2,2}
72: {1,1,1,2,2}
81: {2,2,2,2}
98: {1,4,4}
100: {1,1,3,3}
108: {1,1,2,2,2}
121: {5,5}
125: {3,3,3}
144: {1,1,1,1,2,2}
162: {1,2,2,2,2}
169: {6,6}
196: {1,1,4,4}
200: {1,1,1,3,3}
-
N:= 1000: # to get terms <= N
P:= select(isprime, [seq(i,i=3..floor(sqrt(N)),2)]):
B:= map(proc(p) local y; seq(p^y, y=2..floor(log[p](N))) end proc, P):
sort(map(proc(t) local z; seq(2^z*t, z=0..ilog2(N/t)) end proc, B)); # Robert Israel, May 03 2019
-
Select[Range[1000],MatchQ[FactorInteger[2*#],{{2,},{?(#>2&),_?(#>1&)}}]&]
A325461
Heinz numbers of integer partitions with strictly decreasing differences (with the last part taken to be 0).
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 9, 11, 13, 15, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 53, 55, 59, 61, 67, 71, 73, 75, 77, 79, 83, 89, 91, 97, 101, 103, 107, 109, 113, 119, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
3: {2}
4: {1,1}
5: {3}
7: {4}
9: {2,2}
11: {5}
13: {6}
15: {2,3}
17: {7}
19: {8}
23: {9}
25: {3,3}
29: {10}
31: {11}
35: {3,4}
37: {12}
41: {13}
43: {14}
Cf.
A056239,
A112798,
A320510,
A325327,
A325362,
A325364,
A325367,
A325388,
A325390,
A325396,
A325399,
A325407,
A325457,
A325460.
-
primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
Select[Range[100],Greater@@Differences[Append[primeptn[#],0]]&]
Comments