A353430
Number of integer compositions of n that are empty, a singleton, or whose own run-lengths are a consecutive subsequence that is already counted.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 3, 1, 1, 4, 5, 7, 9, 11, 15, 16, 22, 25, 37, 37, 45
Offset: 0
The a(n) compositions for selected n (A..E = 10..14):
n=4: n=6: n=9: n=10: n=12: n=14:
-----------------------------------------------------------
(4) (6) (9) (A) (C) (E)
(22) (1122) (333) (2233) (2244) (2255)
(2211) (121122) (3322) (4422) (5522)
(221121) (131122) (151122) (171122)
(221131) (221124) (221126)
(221142) (221135)
(221151) (221153)
(241122) (221162)
(421122) (221171)
(261122)
(351122)
(531122)
(621122)
(122121122)
(221121221)
A114901 counts compositions with no runs of length 1.
A329739 counts compositions with all distinct run-lengths.
Cf.
A005811,
A032020,
A103295,
A114640,
A165413,
A242882,
A325705,
A333755,
A351013,
A353400,
A353401.
-
yoyQ[y_]:=Length[y]<=1||MemberQ[Join@@Table[Take[y,{i,j}],{i,Length[y]},{j,i,Length[y]}],Length/@Split[y]]&&yoyQ[Length/@Split[y]];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],yoyQ]],{n,0,15}]
A325706
Heinz numbers of integer partitions containing all of their distinct multiplicities.
Original entry on oeis.org
1, 2, 6, 9, 10, 12, 14, 18, 22, 26, 30, 34, 36, 38, 40, 42, 46, 58, 60, 62, 66, 70, 74, 78, 82, 84, 86, 90, 94, 102, 106, 110, 112, 114, 118, 120, 122, 125, 126, 130, 132, 134, 138, 142, 146, 150, 154, 156, 158, 166, 170, 174, 178, 180, 182, 186, 190, 194, 198
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
6: {1,2}
9: {2,2}
10: {1,3}
12: {1,1,2}
14: {1,4}
18: {1,2,2}
22: {1,5}
26: {1,6}
30: {1,2,3}
34: {1,7}
36: {1,1,2,2}
38: {1,8}
40: {1,1,1,3}
42: {1,2,4}
46: {1,9}
58: {1,10}
60: {1,1,2,3}
62: {1,11}
Cf.
A056239,
A109297,
A112798,
A114639,
A114640,
A181819,
A225486,
A290689,
A324753,
A324843,
A325702,
A325705,
A325707,
A325755.
A325708
Numbers n whose prime indices cover an initial interval of positive integers and include all prime exponents of n.
Original entry on oeis.org
1, 2, 6, 12, 18, 30, 36, 60, 90, 120, 150, 180, 210, 270, 300, 360, 420, 450, 540, 600, 630, 750, 840, 900, 1050, 1080, 1260, 1350, 1470, 1500, 1680, 1800, 1890, 2100, 2250, 2310, 2520, 2700, 2940, 3000, 3150, 3780, 4200, 4410, 4500, 4620, 5040, 5250, 5400
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
6: {1,2}
12: {1,1,2}
18: {1,2,2}
30: {1,2,3}
36: {1,1,2,2}
60: {1,1,2,3}
90: {1,2,2,3}
120: {1,1,1,2,3}
150: {1,2,3,3}
180: {1,1,2,2,3}
210: {1,2,3,4}
270: {1,2,2,2,3}
300: {1,1,2,3,3}
360: {1,1,1,2,2,3}
420: {1,1,2,3,4}
450: {1,2,2,3,3}
540: {1,1,2,2,2,3}
600: {1,1,1,2,3,3}
A353696
Numbers k such that the k-th composition in standard order (A066099) is empty, a singleton, or has run-lengths that are a consecutive subsequence that is already counted.
Original entry on oeis.org
0, 1, 2, 4, 8, 10, 16, 32, 43, 58, 64, 128, 256, 292, 349, 442, 512, 586, 676, 697, 826, 1024, 1210, 1338, 1393, 1394, 1396, 1594, 2048, 2186, 2234, 2618, 2696, 2785, 2786, 2792, 3130, 4096, 4282, 4410, 4666, 5178, 5569, 5570, 5572, 5576, 5584, 6202, 8192
Offset: 1
The terms together with their corresponding compositions begin:
0: ()
1: (1)
2: (2)
4: (3)
8: (4)
10: (2,2)
16: (5)
32: (6)
43: (2,2,1,1)
58: (1,1,2,2)
64: (7)
128: (8)
256: (9)
292: (3,3,3)
349: (2,2,1,1,2,1)
442: (1,2,1,1,2,2)
512: (10)
586: (3,3,2,2)
676: (2,2,3,3)
697: (2,2,1,1,3,1)
826: (1,3,1,1,2,2)
Non-recursive non-consecutive for partitions:
A325755, counted by
A325702.
A005811 counts runs in binary expansion.
Statistics of standard compositions:
Classes of standard compositions:
Cf.
A032020,
A114640,
A181819,
A228351,
A329739,
A318928,
A325705,
A329738,
A333224,
A353427,
A353403.
-
stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
yoyQ[y_]:=Length[y]<=1||MemberQ[Join@@Table[Take[y,{i,j}],{i,Length[y]},{j,i,Length[y]}],Length/@Split[y]]&&yoyQ[Length/@Split[y]];
Select[Range[0,1000],yoyQ[stc[#]]&]
Comments