cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A325764 Heinz numbers of integer partitions whose distinct consecutive subsequences have distinct sums that cover an initial interval of positive integers.

Original entry on oeis.org

1, 2, 4, 6, 8, 16, 18, 20, 32, 54, 56, 64, 100, 128, 162, 176, 256, 392, 416, 486, 500, 512, 1024, 1088, 1458, 1936, 2048, 2432, 2500, 2744, 4096, 4374, 5408, 5888, 8192, 12500, 13122, 14848, 16384, 18496, 19208, 21296, 31744, 32768, 39366, 46208, 62500, 65536
Offset: 1

Views

Author

Gus Wiseman, May 20 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The enumeration of these partitions by sum is given by A325765.

Examples

			The sequence of terms together with their prime indices begins:
     1: {}
     2: {1}
     4: {1,1}
     6: {1,2}
     8: {1,1,1}
    16: {1,1,1,1}
    18: {1,2,2}
    20: {1,1,3}
    32: {1,1,1,1,1}
    54: {1,2,2,2}
    56: {1,1,1,4}
    64: {1,1,1,1,1,1}
   100: {1,1,3,3}
   128: {1,1,1,1,1,1,1}
   162: {1,2,2,2,2}
   176: {1,1,1,1,5}
   256: {1,1,1,1,1,1,1,1}
   392: {1,1,1,4,4}
   416: {1,1,1,1,1,6}
   486: {1,2,2,2,2,2}
   500: {1,1,3,3,3}
   512: {1,1,1,1,1,1,1,1,1}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],UnsameQ@@Total/@Union[ReplaceList[primeMS[#],{_,s__,_}:>{s}]]&&Range[Total[primeMS[#]]]==Union[ReplaceList[primeMS[#],{_,s__,_}:>Plus[s]]]&]

A325777 Heinz numbers of integer partitions whose distinct consecutive subsequences do not have different sums.

Original entry on oeis.org

12, 24, 30, 36, 40, 48, 60, 63, 70, 72, 80, 84, 90, 96, 108, 112, 120, 126, 132, 140, 144, 150, 154, 156, 160, 165, 168, 180, 189, 192, 198, 200, 204, 210, 216, 220, 224, 228, 240, 252, 264, 270, 273, 276, 280, 286, 288, 300, 308, 312, 315, 320, 324, 325, 330
Offset: 1

Views

Author

Gus Wiseman, May 20 2019

Keywords

Comments

First differs from A299729 in lacking 462.
This sequence does not contain all multiples of its elements. For example, it contains 154 (with prime indices {1,4,5}) but not 462 (with prime indices {1,2,4,5}).

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],!UnsameQ@@Total/@Union[ReplaceList[primeMS[#],{_,s__,_}:>{s}]]&]

A334268 Number of compositions of n where every distinct subsequence (not necessarily contiguous) has a different sum.

Original entry on oeis.org

1, 1, 2, 4, 5, 10, 10, 24, 24, 43, 42, 88, 72, 136, 122, 242, 213, 392, 320, 630, 490, 916, 742, 1432, 1160, 1955, 1604, 2826, 2310, 3850, 2888, 5416, 4426, 7332, 5814, 10046, 7983, 12946, 10236, 17780, 14100, 22674, 17582, 30232, 23674, 37522, 29426, 49832
Offset: 0

Views

Author

Gus Wiseman, Jun 02 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
The contiguous case is A325676.

Examples

			The a(1) = 1 through a(6) = 19 compositions:
  (1)  (2)    (3)      (4)        (5)          (6)
       (1,1)  (1,2)    (1,3)      (1,4)        (1,5)
              (2,1)    (2,2)      (2,3)        (2,4)
              (1,1,1)  (3,1)      (3,2)        (3,3)
                       (1,1,1,1)  (4,1)        (4,2)
                                  (1,1,3)      (5,1)
                                  (1,2,2)      (1,1,4)
                                  (2,2,1)      (2,2,2)
                                  (3,1,1)      (4,1,1)
                                  (1,1,1,1,1)  (1,1,1,1,1,1)
		

Crossrefs

These compositions are ranked by A334967.
Compositions where every restriction to a subinterval has a different sum are counted by A169942 and A325677 and ranked by A333222. The case of partitions is counted by A325768 and ranked by A325779.
Positive subset-sums of partitions are counted by A276024 and A299701.
Knapsack partitions are counted by A108917 and A325592 and ranked by A299702, while the strict case is counted by A275972 and ranked by A059519 and A301899.
Knapsack compositions are counted by A325676 and A325687 and ranked by A333223. The case of partitions is counted by A325769 and ranked by A325778, for which the number of distinct consecutive subsequences is given by A325770.

Programs

  • Maple
    b:= proc(n, s) option remember; `if`(n=0, 1, add((h->
          `if`(nops(h)=nops(map(l-> add(i, i=l), h)),
           b(n-j, h), 0))({s[], map(l-> [l[], j], s)[]}), j=1..n))
        end:
    a:= n-> b(n, {[]}):
    seq(a(n), n=0..23);  # Alois P. Heinz, Jun 03 2020
  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@Total/@Union[Subsets[#]]&]],{n,0,15}]

Extensions

a(18)-a(47) from Alois P. Heinz, Jun 03 2020
Previous Showing 11-13 of 13 results.