cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 50 results.

A327806 Triangle read by rows where T(n,k) is the number of antichains of sets with n vertices and vertex-connectivity >= k.

Original entry on oeis.org

1, 2, 0, 5, 1, 0, 19, 5, 2, 0, 167, 84, 44, 17, 0
Offset: 0

Views

Author

Gus Wiseman, Sep 26 2019

Keywords

Comments

An antichain is a set of nonempty sets, none of which is a subset of any other.
The vertex-connectivity of a set-system is the minimum number of vertices that must be removed (along with any resulting empty edges) to obtain a non-connected set-system or singleton. Note that this means a single node has vertex-connectivity 0.

Examples

			Triangle begins:
    1
    2   0
    5   1   0
   19   5   2   0
  167  84  44  17   0
		

Crossrefs

Except for the first column, same as the covering case A327350.
Column k = 0 is A014466 (antichains).
Column k = 1 is A048143 (clutters), if we assume A048143(0) = A048143(1) = 0.
Column k = 2 is A275307 (blobs), if we assume A275307(1) = A275307(2) = 0.
The unlabeled version is A327807.
The case for vertex connectivity exactly k is A327351.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]];
    Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],vertConnSys[Range[n],#]>=k&]],{n,0,4},{k,0,n}]

A329627 Smallest BII-number of a clutter (connected antichain) with n edges.

Original entry on oeis.org

0, 1, 20, 52, 308, 820, 2868, 68404, 199476, 723764
Offset: 0

Views

Author

Gus Wiseman, Nov 28 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets of positive integers) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
A set-system is an antichain if no edge is a proper subset of any other.
For n > 1, a(n) appears to be the number whose binary indices are the first n terms of A018900.

Examples

			The sequence of terms together with their corresponding set-systems begins:
       0: {}
       1: {{1}}
      20: {{1,2},{1,3}}
      52: {{1,2},{1,3},{2,3}}
     308: {{1,2},{1,3},{2,3},{1,4}}
     820: {{1,2},{1,3},{2,3},{1,4},{2,4}}
    2868: {{1,2},{1,3},{2,3},{1,4},{2,4},{3,4}}
   68404: {{1,2},{1,3},{2,3},{1,4},{2,4},{3,4},{1,5}}
  199476: {{1,2},{1,3},{2,3},{1,4},{2,4},{3,4},{1,5},{2,5}}
  723764: {{1,2},{1,3},{2,3},{1,4},{2,4},{3,4},{1,5},{2,5},{3,5}}
		

Crossrefs

The version for MM-numbers is A329555.
BII-numbers of clutters are A326750.
Clutters of sets are counted by A048143.
Minimum BII-numbers of connected set-systems are A329625.
Minimum BII-numbers of antichains are A329626.
MM-numbers of connected weak antichains of multisets are A329559.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    First/@GatherBy[Select[Range[0,10000],stableQ[bpe/@bpe[#]]&&Length[csm[bpe/@bpe[#]]]<=1&],Length[bpe[#]]&]

A329661 BII-number of the set-system whose MM-number is A329629(n).

Original entry on oeis.org

0, 1, 2, 8, 4, 3, 128, 16, 32768, 9, 5, 2147483648, 256, 32, 129, 10, 9223372036854775808, 6, 170141183460469231731687303715884105728, 512, 65536, 57896044618658097711785492504343953926634992332820282019728792003956564819968, 130, 17, 32769, 4294967296
Offset: 1

Views

Author

Gus Wiseman, Nov 19 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets of positive integers) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of all set-systems together with their MM-numbers and BII-numbers begins:
             {}:  1 ~ 0
          {{1}}:  3 ~ 1
          {{2}}:  5 ~ 2
          {{3}}: 11 ~ 8
        {{1,2}}: 13 ~ 4
      {{1},{2}}: 15 ~ 3
          {{4}}: 17 ~ 128
        {{1,3}}: 29 ~ 16
          {{5}}: 31 ~ 32768
      {{1},{3}}: 33 ~ 9
    {{1},{1,2}}: 39 ~ 5
          {{6}}: 41 ~ 2147483648
        {{1,4}}: 43 ~ 256
        {{2,3}}: 47 ~ 32
      {{1},{4}}: 51 ~ 129
      {{2},{3}}: 55 ~ 10
          {{7}}: 59 ~ 9223372036854775808
    {{2},{1,2}}: 65 ~ 6
          {{8}}: 67 ~ 170141183460469231731687303715884105728
        {{2,4}}: 73 ~ 512
		

Crossrefs

MM-numbers of set-systems are A329629.
Classes of MM-numbers: A305078 (connected), A316476 (antichains), A318991 (chains), A320456 (covers), A329559 (clutters).
Classes of BII-numbers: A326701 (set partitions), A326703 (chains), A326704 (antichains), A326749 (connected), A326752 (hypertrees), A326754 (covers).

Programs

  • Mathematica
    fbi[q_]:=If[q=={},0,Total[2^q]/2];
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    das=Select[Range[100],OddQ[#]&&SquareFreeQ[#]&&And@@SquareFreeQ/@primeMS[#]&];
    Table[fbi[fbi/@primeMS/@primeMS[n]],{n,das}]

Formula

A326031(a(n)) = A302242(A329629(n)).

A371455 Numbers k such that if we take the binary indices of each prime index of k we get an antichain of sets.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37, 38, 41, 42, 43, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 59, 61, 63, 64, 65, 67, 69, 71, 72, 73, 74, 76, 79, 81, 83, 84, 86, 89, 95, 96, 97, 98, 99
Offset: 1

Views

Author

Gus Wiseman, Apr 01 2024

Keywords

Comments

In an antichain of sets, no edge is a proper subset of any other.

Examples

			The prime indices of 65 are {3,6} with binary indices {{1,2},{2,3}} so 65 is in the sequence.
The prime indices of 255 are {2,3,7} with binary indices {{2},{1,2},{1,2,3}} so 255 is not in the sequence.
		

Crossrefs

Contains all powers of primes A000961.
An opposite version is A087086, carry-connected case A371294.
For prime indices of prime indices we have A316476, carry-connected A329559.
These antichains are counted by A325109.
For binary indices of binary indices we have A326704, carry-conn. A326750.
The carry-connected case is A371445, counted by A371446.
A048143 counts connected antichains of sets.
A048793 lists binary indices, reverse A272020, length A000120, sum A029931.
A050320 counts set multipartitions of prime indices, see also A318360.
A070939 gives length of binary expansion.
A089259 counts set multipartitions of integer partitions.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A116540 counts normal set multipartitions.
A302478 ranks set multipartitions, cf. A073576.
A325118 ranks carry-connected partitions, counted by A325098.
A371451 counts carry-connected components of binary indices.

Programs

  • Mathematica
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],stableQ[bix/@prix[#],SubsetQ]&]

A327424 Number of unlabeled, non-connected or empty antichains of nonempty subsets of {1..n}.

Original entry on oeis.org

1, 1, 2, 4, 10, 33, 234, 16579
Offset: 0

Views

Author

Gus Wiseman, Sep 26 2019

Keywords

Comments

An antichain is a set of nonempty sets, none of which is a subset of any other. A singleton is considered to be connected.

Examples

			Non-isomorphic representatives of the a(0) = 1 through a(4) = 10 antichains:
  {}  {}  {}         {}             {}
          {{1},{2}}  {{1},{2}}      {{1},{2}}
                     {{1},{2,3}}    {{1},{2,3}}
                     {{1},{2},{3}}  {{1},{2},{3}}
                                    {{1},{2,3,4}}
                                    {{1,2},{3,4}}
                                    {{1},{2},{3,4}}
                                    {{1},{2},{3},{4}}
                                    {{1},{2,4},{3,4}}
                                    {{1},{2,3},{2,4},{3,4}}
		

Crossrefs

Partial sums of the positive-index terms of A327426.
The covering case is A327426.
The labeled version is A327354.
The labeled covering case is A120338.
Unlabeled antichains that are either not connected or not covering are A327437.
The case without empty antichains is A327808.

A327425 Number of unlabeled antichains of nonempty sets covering n vertices where every two vertices appear together in some edge (cointersecting).

Original entry on oeis.org

1, 1, 1, 2, 6, 54
Offset: 0

Views

Author

Gus Wiseman, Sep 11 2019

Keywords

Comments

An antichain is a set of sets, none of which is a subset of any other. It is covering if there are no isolated vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 6 antichains:
    {1}  {12}  {123}         {1234}
               {12}{13}{23}  {12}{134}{234}
                             {124}{134}{234}
                             {12}{13}{14}{234}
                             {123}{124}{134}{234}
                             {12}{13}{14}{23}{24}{34}
		

Crossrefs

The labeled version is A327020.
Unlabeled covering antichains are A261005.
The weighted version is A327060.

A327436 Number of connected, unlabeled antichains of nonempty subsets of {1..n} covering n vertices with at least one cut-vertex (vertex-connectivity 1).

Original entry on oeis.org

0, 0, 1, 1, 4, 29
Offset: 0

Views

Author

Gus Wiseman, Sep 11 2019

Keywords

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(5) = 29 antichains:
  {12}  {12}{13}  {12}{134}         {12}{1345}
                  {12}{13}{14}      {123}{145}
                  {12}{13}{24}      {12}{13}{145}
                  {12}{13}{14}{23}  {12}{13}{245}
                                    {13}{24}{125}
                                    {13}{124}{125}
                                    {14}{123}{235}
                                    {12}{13}{14}{15}
                                    {12}{13}{14}{25}
                                    {12}{13}{24}{35}
                                    {12}{13}{14}{235}
                                    {12}{13}{23}{145}
                                    {12}{13}{45}{234}
                                    {12}{14}{23}{135}
                                    {12}{15}{134}{234}
                                    {15}{23}{124}{134}
                                    {15}{123}{124}{134}
                                    {15}{123}{124}{234}
                                    {12}{13}{14}{15}{23}
                                    {12}{13}{14}{23}{25}
                                    {12}{13}{14}{23}{45}
                                    {12}{13}{15}{24}{34}
                                    {12}{13}{14}{15}{234}
                                    {12}{13}{14}{25}{234}
                                    {12}{13}{14}{15}{23}{24}
                                    {12}{13}{14}{15}{23}{45}
                                    {12}{13}{14}{23}{24}{35}
                                    {15}{123}{124}{134}{234}
                                    {12}{13}{14}{15}{23}{24}{34}
		

Crossrefs

Formula

a(n > 2) = A261006(n) - A305028(n).

A327808 Number of unlabeled, disconnected, nonempty antichains of subsets of {1..n}.

Original entry on oeis.org

0, 0, 1, 3, 9, 32, 233, 16578
Offset: 0

Views

Author

Gus Wiseman, Sep 26 2019

Keywords

Comments

An antichain is a set of nonempty sets, none of which is a subset of any other. A singleton is considered to be connected.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(4) = 9 antichains:
   {{1},{2}}  {{1},{2}}      {{1},{2}}
              {{1},{2,3}}    {{1},{2,3}}
              {{1},{2},{3}}  {{1},{2},{3}}
                             {{1},{2,3,4}}
                             {{1,2},{3,4}}
                             {{1},{2},{3,4}}
                             {{1},{2},{3},{4}}
                             {{2},{1,3},{1,4}}
                             {{4},{1,2},{1,3},{2,3}}
		

Crossrefs

The labeled version is A327354 - 1.
The covering case is A327426.
Unlabeled antichains that are either not connected or not covering are A327437.
The version with empty antichains allowed is A327424.

Formula

a(n) = A327424(n) - 1.

A319643 Number of non-isomorphic weight-n strict multiset partitions whose dual is an antichain of (not necessarily distinct) multisets.

Original entry on oeis.org

1, 1, 3, 6, 15, 29, 82, 179, 504, 1302, 3822
Offset: 0

Views

Author

Gus Wiseman, Sep 25 2018

Keywords

Comments

The dual of a multiset partition has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
From Gus Wiseman, Aug 15 2019: (Start)
Also the number of non-isomorphic T_0 weak antichains of weight n. The T_0 condition means that the dual is strict (no repeated edges). A weak antichain is a multiset of multisets, none of which is a proper submultiset of any other. For example, non-isomorphic representatives of the a(0) = 1 through a(4) = 15 T_0 weak antichains are:
{} {{1}} {{1,1}} {{1,1,1}} {{1,1,1,1}}
{{1},{1}} {{1,2,2}} {{1,2,2,2}}
{{1},{2}} {{1},{2,2}} {{1,1},{1,1}}
{{1},{1},{1}} {{1,1},{2,2}}
{{1},{2},{2}} {{1},{2,2,2}}
{{1},{2},{3}} {{1,2},{2,2}}
{{1},{2,3,3}}
{{1,3},{2,3}}
{{1},{1},{2,2}}
{{1},{2},{3,3}}
{{1},{1},{1},{1}}
{{1},{1},{2},{2}}
{{1},{2},{2},{2}}
{{1},{2},{3},{3}}
{{1},{2},{3},{4}}
(End)

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 15 multiset partitions:
1: {{1}}
2: {{1,1}}
   {{1,2}}
   {{1},{2}}
3: {{1,1,1}}
   {{1,2,3}}
   {{1},{1,1}}
   {{1},{2,2}}
   {{1},{2,3}}
   {{1},{2},{3}}
4: {{1,1,1,1}}
   {{1,1,2,2}}
   {{1,2,3,4}}
   {{1},{1,1,1}}
   {{1},{1,2,2}}
   {{1},{2,2,2}}
   {{1},{2,3,4}}
   {{1,1},{2,2}}
   {{1,2},{3,3}}
   {{1,2},{3,4}}
   {{1},{2},{1,2}}
   {{1},{2},{2,2}}
   {{1},{2},{3,3}}
   {{1},{2},{3,4}}
   {{1},{2},{3},{4}}
		

Crossrefs

A327807 Triangle read by rows where T(n,k) is the number of unlabeled antichains of sets with n vertices and vertex-connectivity >= k.

Original entry on oeis.org

1, 2, 0, 4, 1, 0, 9, 3, 2, 0, 29, 14, 10, 6, 0, 209, 157, 128, 91, 54, 0
Offset: 0

Views

Author

Gus Wiseman, Sep 26 2019

Keywords

Comments

An antichain is a set of sets, none of which is a subset of any other.
The vertex-connectivity of a set-system is the minimum number of vertices that must be removed (along with any resulting empty edges) to obtain a non-connected set-system or singleton. Note that this means a single node has vertex-connectivity 0.

Examples

			Triangle begins:
    1
    2   0
    4   1   0
    9   3   2   0
   29  14  10   6   0
  209 157 128  91  54   0
		

Crossrefs

Column k = 0 is A306505.
Column k = 1 is A261006 (clutters), if we assume A261006(0) = A261006(1) = 0.
Column k = 2 is A305028 (blobs), if we assume A305028(0) = A305028(2) = 0.
Except for the first column, same as A327358 (the covering case).
The labeled version is A327806.
Previous Showing 41-50 of 50 results.